Abstract

The most commonly used surface protection technologies against wear and corrosion are electrochemical hard chromium plating or thermal spraying. But these coating technologies have limits. Additionally, due to health concerns, hard chromium plating is under increasingly restrictive use in Germany, the European Union, and the Asian market. One technology which is currently under investigation for replacing conventional coating processes, e.g., plating in these instances is the high-speed laser cladding. Using high-speed laser cladding (high-speed laser metal deposition, HS-LMD), which is a DED (directed energy deposition) process, a laser beam is heating powder particles, which are fed coaxially into the laser beam, to nearly melting temperature before these particles hit the surface. Using a laser as the heat source, the heat input into the workpiece can be minimized. This allows a very low dilution of additive material into workpiece—typically < 10 µm—and high feed rates between 100 and 500 m/min can be achieved. Layers generated by this process can be locally adjusted in thickness between 50 and 300 µm per layer. Since each layer is metallurgically bonded to the metallic substrate or the adjacent layer before, multi layers or multi-material approaches are feasible. By use of the aforementioned unique process features, new and in properties tailored coating systems become possible. HS-LMD might be a promising candidate for replacement of hard chromium plating, for example, large rotational symmetric parts. In this paper, we have selected Rockit®401 as a hard, corrosion-resistant, and nearly “cracking-proof” material. Additionally, we have chosen the corrosion resistant Inconel® 625. We will investigate the influence of high surface rates on properties such as defects, hardness, and crack susceptibility, as well as achievable layer thicknesses.

References

1.
EUROPE
,
2006
,
Regulation (EC) No 1907/2006 – Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
.
2.
Lausmann
,
G. A.
, and
Unruh
,
J. N.
,
2006
,
Die Galvanische Verchromung
,
Leuze Verlag
,
Auflage
.
3.
Lange
,
K.
,
Meinert
,
H.
, and
Arend
,
H.
,
1956
, “Die Hartverchromung,”
Verschleißverhalten Hartverchromter Schmiedegesenke in der Auflage des Fachverbandes Gesenkschmieden, Hagen i. W. Forschungsberichte des Wirtschafts- und Verkehrsministeriums Nordrhein-Westfalen
,
286
, ed.,
VS Verlag für Sozialwissenschaften
,
Wiesbaden
.
4.
Baston
,
K.
,
2019
, “
Plasmanitrieren Statt Verchromen
,”
JOT J. fuer Oberflaechentechnik
,
59
(
S1
), pp.
26
28
.
5.
Bundesanstalt für Arbeitsschutz and Arbeitsmedizin
,
2019
, “
Perspektiven der Substitution von Chrom(VI)
,”
JOT J. fuer Oberflaechentechnik
,
59
(
1
), pp.
6
8
.
6.
Käszmann
,
H.
,
2019
, “
Perspektiven der Substitution für Chrom(VI)—Funktionieren die Alternativen und sind sie bezahlbar?
WOMAG
,
1–2
. https://www.wotech-technical-media.de/womag/ausgabe/2019/01_02/18_baua_chrom_1-2j2019/18_baua_chrom_1-2j2019.php
7.
Nowotny
,
S.
,
Scharek
,
S.
,
Beyer
,
E.
, and
Richter
,
K.-H.
,
2007
, “
Laser Beam Build-up Welding: Precision in Repair, Surface Cladding and Direct 3D Metal Deposition
,”
J. Therm. Spray Technol.
,
16
(
3
), pp.
344
348
.
8.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
G.
, and
Kennedy
,
A.
,
2002
, “
Laser Cladding of Aerospace Materials
,”
J. Mater. Process. Technol.
,
122
(
1
), pp.
63
68
.
9.
Candel-Ruiz
,
A.
, and
Metzger
,
J.
,
2011
, “
Reparaturlösungen für Höchste Ansprüche—Laserauftragschweißen zur Reparatur von Bauteiloberflächen
,”
Laser Tech. J.
,
8
(
6
), pp.
40
43
.
10.
Gasser
,
A.
,
Meiners
,
W.
,
Weisheit
,
A.
,
Willenborg
,
W.
,
Stollenberg
,
J.
, and
Wissenbach
,
K.
,
2010
, “
Maßgeschneiderte Oberflächen und Bauteile
,”
Laser Tech. J.
,
7
(
4
), pp.
47
53
.
11.
Nickels
,
L.
,
2020
, “
They do it With Laser
,”
Met. Powder Rep.
,
75
(
2
), pp.
79
81
.
12.
Cavaliere
,
P.
,
Silvello
,
A.
, and
Perrone
,
A.
,
2021
, “Additive Manufacturing by Laser Cladding: State of the Art,”
Laser Cladding of Metals
,
P.
Cavaliere
, ed.,
Springer
,
Cham
.
13.
Cottam
,
R.
, and
Brandt
,
M.
,
2011
, “
Laser Cladding of Ti-6Al-4V Powder on Ti-6Al-4V Substrate: Effect of Laser Cladding Parameters on Microstructure
,”
Phys. Procedia
,
12
(
Part A
), pp.
323
329
.
14.
Schopphoven
,
T.
,
Gasser
,
A.
, and
Backes
,
G.
,
2017
, “
EHLA: Extreme HS-Laser Material Deposition, Economical and Effective Protection Against Corrosion Wear
,”
Laser Tech. J.
,
14
(
3
), pp.
45
45
.
15.
Vogt
,
S.
, and
Itasse
,
S.
,
2019
, “
Laserauftragschweißen bietet Alternative zu Chrom (VI)
,”
Maschinenmarkt
. https://www.maschinenmarkt.vogel.de/laserauftragschweissen-bietet-alternative-zu-chromvi-a-876389/
16.
Vogt
,
S.
,
2019
, “
Besser als Chrom, Das Highspeed-Laserauftragschweißen EHLA ist die Wirtschaftlichste und Sicherste Alternative zum Hartverchromen
,”
Laser Community
,
29
(
4
), pp.
22
23
.
17.
Liqun
,
L.
, and
Faming
,
S.
,
2019
, “
Comparative Study of Stainless Steel AISI 431 Coatings Prepared by Extreme-High-Speed and Conventional Laser Cladding
,”
J. Laser Appl.
,
31
(
4
), p.
042009
.
18.
Scendo
,
M.
,
Staszewska-Samson
,
K.
, and
Danielewski
,
H.
,
2021
, “
Corrosion Behavior of Inconel 625 Coating Produced by Laser Cladding
,”
Coatings
,
11
(
7
), p.
759
.
19.
Amado
,
J. M.
,
Tobar
,
M. J.
,
Yanes
,
A.
,
Amigo
,
V.
, and
Candel
,
J. J.
,
2011
, “
Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers Obtained by Laser Cladding
,”
Phys. Procedia
,
12
(
Part A
), pp.
338
344
.
20.
Kelbassa
,
I.
,
2006
, “
Qualifizieren des Laserstrahl-Auftrag-Schweißen von BLISKs aus Nickel- und Titanbasis-Legierungen
,”
Doctoral thesis
,
RWTH Aachen
.
21.
Thiele
,
W.
,
2016
, “
Laserauftragschweißen mit der Aluminium-Legierung AlSi10Mg: Qualifizierung, Mechanische Eigenschaften und Gefügeanalyse
,”
Doctoral thesis
,
RWTH Aachen
.
22.
Faming
,
S.
,
2020
, “
Effect of Microstructure on the Corrosion Resistance of Coatings by Extreme High Speed Laser Cladding
,”
Appl. Surf. Sci.
,
517
.
23.
Li
,
T.
,
Zhang
,
L.
,
Bultel
,
G. G. P.
,
Schopphoven
,
T.
,
Gasser
,
A.
,
Schleifenbaum
,
J. H.
, and
Poprawe
,
R.
,
2019
, “
Extreme High-Speed Laser Material Deposition (EHLA) of AISI 4340 Steel
,”
Coatings
,
9
(
12
), p.
778
.
24.
Schaible
,
J.
,
Sayk
,
L.
,
Schopphoven
,
T.
,
Schleifenbaum
,
J. H.
, and
Häfner
,
C.
,
2021
, “
Development of a High-Speed Laser Material Deposition Process for Additive Manufacturing
,”
J. Laser Appl.
,
33
(
1
), p.
012021
.
25.
Lampa
,
C.
, and
Smirnov
,
I.
,
2019
, “
High Speed Laser Cladding of an Iron Based Alloy Developed for Hard Chrome Replacement
,”
J. Laser Appl.
,
31
(
2
), p.
022511
.
26.
Kaiming
,
W.
,
Dong
,
D.
,
Guan
,
L.
,
Ze
,
P.
,
Baohua
,
C.
, and
Jiang
,
J.
,
2021
, “
A Study on the Additive Manufacturing of a High Chromium Nickel-Based Superalloy by Extreme High-Speed Laser Metal Deposition
,”
Opt. Laser Technol.
,
133
.
You do not currently have access to this content.