Abstract

Subsurface damage that is caused by mechanical machining is a major impediment to the widespread use of hard–brittle materials. Ultrasonic vibration-assisted macro- or micromachining could facilitate shallow subsurface damage compared with conventional machining. However, the subsurface damage that was induced by ultrasonic vibration-assisted nanomachining on hard–brittle silicon crystal has not yet been thoroughly investigated. In this study, we used a tip-based ultrasonic vibration-assisted nanoscratch approach to machine nanochannels on single-crystal silicon, to investigate the subsurface damage mechanism of the hard–brittle material during ductile machining. The material removal state, morphology, and dimensions of the nanochannel, and the effect of subsurface damage on the scratch outcomes were studied. The materials were expelled in rubbing, plowing, and cutting mode in sequence with an increasing applied normal load, and the silicon was significantly harder than the pristine material after plastic deformation. Transmission electron microscope analysis of the subsurface demonstrated that ultrasonic vibration-assisted nanoscratching led to larger subsurface damage compared with static scratching. The transmission electron microscopy results agreed with the Raman spectroscopy and molecular dynamic simulation. Our findings are important for instructing ultrasonic vibration-assisted machining of hard–brittle materials at the nanoscale level.

References

1.
Yin
,
J.
,
Gao
,
W.
,
Zhang
,
Z.
,
Mai
,
Y.
,
Luan
,
A.
,
Jin
,
H.
,
Jian
,
J.
, and
Jin
,
Q.
,
2020
, “
Batch Microfabrication of Highly Integrated Silicon-Based Electrochemical Sensor and Performance Evaluation via Nitrite Water Contaminant Determination
,”
Electrochim. Acta
,
335
, p.
135660
.
2.
Li
,
J.
,
Geng
,
D.
,
Zhang
,
D.
,
Qin
,
W.
, and
Jiang
,
Y.
,
2018
, “
Ultrasonic Vibration Mill-Grinding of Single-Crystal Silicon Carbide for Pressure Sensor Diaphragms
,”
Ceram. Int.
,
44
(
3
), pp.
3107
3112
.
3.
Ray
,
S. K.
,
Katiyar
,
A. K.
, and
Raychaudhuri
,
A. K.
,
2017
, “
One-Dimensional Si/Ge Nanowires and Their Heterostructures for Multifunctional Applications-A Review
,”
Nanotechnology
,
28
(
9
), p.
092001
.
4.
Jenie
,
S.
,
Plush
,
S.
, and
Voelcker
,
N.
,
2016
, “
Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors
,”
Pharm. Res.
,
33
(
10
), pp.
2314
2336
.
5.
Geng
,
Y.
,
Yan
,
Y.
,
Wang
,
J.
, and
Zhuang
,
Y.
,
2018
, “
Fabrication of Nanopatterns on Silicon Surface by Combining AFM-Based Scratching and RIE Methods
,”
Nanomanuf. Metrol.
,
1
(
4
), pp.
225
235
.
6.
Rosa
,
A.
,
Leonhardt
,
A.
,
Souza
,
L.
,
Lima
,
L.
,
Santos
,
M.
,
Manera
,
L.
, and
Diniz
,
J.
,
2021
, “
A Novel Self-Aligned Double Patterning Integrated With Ga+ Focused Ion Beam Milling for Silicon Nanowire Definition
,”
Microelectron. Eng.
,
237
, p.
111493
.
7.
Moataz
,
E.
,
Mitarai
,
T.
,
Tomohiro
,
A.
,
Yasuyuki
,
M.
, and
Nobuhiko
,
N.
,
2020
, “
Fabrication of Si Photonic Waveguides by Electron Beam Lithography Using Improved Proximity Effect Correction
,”
Jpn. J. Appl. Phys.
,
59
(
12
), p.
126502
.
8.
Zhao
,
Z.
,
Jelenković
,
E.
,
Xiao
,
G.
,
Zhuang
,
Z.
, and
To
,
S.
,
2021
, “
Hydrogen Ion Implantation Induced Cutting Behavior Variation in Plunge Cutting of the Monocrystalline Silicon
,”
Nanomanuf. Metrol.
9.
Fang
,
Q.
, and
Zhang
,
L.
,
2013
, “
Prediction of the Threshold Load of Dislocation Emission in Silicon During Nanoscratching
,”
Acta Mater.
,
61
(
14
), pp.
5469
5476
.
10.
Yang
,
Z.
,
Zhu
,
L.
,
Zhang
,
G.
,
Ni
,
C.
, and
Lin
,
B.
,
2020
, “
Review of Ultrasonic Vibration-Assisted Machining in Advanced Materials
,”
Int. J. Mach. Tools Manuf.
,
156
, p.
103594
.
11.
Ahmed
,
Y.
,
Cong
,
W.
,
Stanco
,
M. R.
,
Xu
,
Z.
,
Pei
,
Z.
,
Treadwell
,
C.
,
Zhu
,
Y.
, and
Li
,
Z.
,
2012
, “
Rotary Ultrasonic Machining of Alumina Dental Ceramics: A Preliminary Experimental Study on Surface and Subsurface Damages
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
064501
.
12.
Wang
,
J.
,
Zhang
,
J.
,
Feng
,
P.
, and
Guo
,
P.
,
2018
, “
Damage Formation and Suppression in Rotary Ultrasonic Machining of Hard and Brittle Materials: A Critical Review
,”
Ceram. Int.
,
44
(
2
), pp.
1227
1239
.
13.
Lakhdari
,
F.
,
Bouzid
,
D.
,
Belkhir
,
N.
, and
Herold
,
V.
,
2017
, “
Surface and Subsurface Damage in Zerodur® Glass Ceramic During Ultrasonic Assisted Grinding
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1993
2000
.
14.
Zhang
,
B.
, and
Yin
,
J.
,
2019
, “
The ‘Skin Effect’ of Subsurface Damage Distribution in Materials Subjected to High-Speed Machining
,”
Int. J. Extreme Manuf.
,
1
(
1
), p.
012007
.
15.
Zhang
,
C.
,
Feng
,
P.
, and
Zhang
,
J.
,
2013
, “
Ultrasonic Vibration-Assisted Scratch-Induced Characteristics of C-Plane Sapphire With a Spherical Indenter
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
38
48
.
16.
Liang
,
Z.
,
Wang
,
X.
,
Wu
,
Y.
,
Xie
,
L.
,
Jiao
,
L.
, and
Zhao
,
W.
,
2013
, “
Experimental Study on Brittle-Ductile Transition in Elliptical Ultrasonic Assisted Grinding (EUAG) of Monocrystal Sapphire Using Single Diamond Abrasive Grain
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
41
51
.
17.
Yan
,
Y.
,
Geng
,
Y.
, and
Hu
,
Z.
,
2015
, “
Recent Advances in AFM Tip-Based Nanomechanical Machining
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
1
18
.
18.
Liu
,
H.
,
Guo
,
Y.
,
Li
,
D.
,
Zhao
,
P.
, and
Wang
,
J.
,
2021
, “
Material Removal Mechanism of FCC Single-Crystalline Materials at Nano-scales: Chip Removal and Ploughing
,”
J. Mater. Process. Technol.
,
294
, p.
117106
.
19.
Lee
,
S.
,
2012
, “
Analysis of Ductile Mode and Brittle Transition of AFM Nanomachining of Silicon
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
71
79
.
20.
Guo
,
J.
,
Xiao
,
C.
,
Peng
,
B.
, and
Qian
,
L.
,
2015
, “
Tribochemistry-Induced Direct Fabrication of Nondestructive Nanochannels on Silicon Surface
,”
RSC Adv.
,
5
(
122
), p.
100769
100774
.
21.
Wang
,
J.
,
Yan
,
Y.
,
Li
,
Z.
, and
Geng
,
Y.
,
2021
, “
Towards Understanding the Machining Mechanism of the Atomic Force Microscopy Tip-Based Nanomilling Process
,”
Int. J. Mach. Tools Manuf.
,
162
, p.
103701
.
22.
Park
,
S.
,
Mostofa
,
M.
,
Park
,
C.
,
Mehrpouya
,
M.
, and
Kim
,
S.
,
2014
, “
Vibration Assisted Nano Mechanical Machining Using AFM Probe
,”
CIRP Ann.—Manuf. Technol.
,
63
(
1
), pp.
537
540
.
23.
Deng
,
J.
,
Zhang
,
L.
,
Dong
,
J.
, and
Cohen
,
P.
,
2016
, “
AFM-Based 3D Nanofabrication Using Ultrasonic Vibration Assisted Nanomachining
,”
J. Manuf. Process.
,
24
, pp.
195
202
.
24.
Deng
,
J.
,
Dong
,
J.
, and
Cohen
,
P.
,
2018
, “
Development and Characterization of Ultrasonic Vibration Assisted Nanomachining Process for Three-Dimensional Nanofabrication
,”
IEEE Trans. Nanotechnol.
,
17
(
3
), pp.
559
566
.
25.
Geng
,
Y.
,
Yan
,
Y.
,
Zhuang
,
Y.
, and
Hu
,
Z.
,
2015
, “
Effects of AFM Tip-Based Direct and Vibration Assisted Scratching Methods on Nanogrooves Fabrication on a Polymer Resist
,”
Appl. Surf. Sci.
,
356
, pp.
348
354
.
26.
Stillinger
,
F.
, and
Weber
,
T.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
(
8
), pp.
5262
5271
.
27.
Tang
,
Q.
,
2007
, “
MD Simulation of Dislocation Mobility During Cutting With Diamond Tip on Silicon
,”
Mater. Sci. Semicond. Process.
,
10
(
6
), pp.
270
275
.
28.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamic
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
29.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
30.
Li
,
C.
,
Zhang
,
Y.
,
Zhou
,
G.
,
Wei
,
Z.
, and
Zhang
,
L.
,
2020
, “
Theoretical Modeling of Brittle-to-Ductile Transition Load of KDP Crystal on (001) Plane During Nanoindentation and Nanoscratch Tests
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14142
14157
.
31.
Burnham
,
N. A.
,
Colton
,
R. J.
, and
Pollock
,
H. M.
,
1993
, “
Interpretation of Force Curves in Force Microscopy
,”
Nanotechnology
,
4
(
2
), pp.
64
80
.
32.
Zhang
,
L.
,
Dong
,
J.
, and
Cohen
,
P.
,
2013
, “
Material-Insensitive Feature Depth Control and Machining Force Reduction by Ultrasonic Vibration in AFM-Based Nanomachining
,”
IEEE Trans. Nanotechnol.
,
12
(
5
), pp.
743
750
.
33.
Philip
,
J.
,
Hess
,
P.
,
Feygelson
,
T.
,
Butler
,
J. E.
,
Chattopadhyay
,
S.
,
Chen
,
K. H.
, and
Chen
,
L. C.
,
2003
, “
Elastic, Mechanical, and Thermal Properties of Nanocrystalline Diamond Films
,”
J. Appl. Phys.
,
93
(
4
), pp.
2164
2171
.
34.
Li
,
X.
,
Gao
,
Y.
,
Ge
,
P.
,
Zhang
,
L.
,
Bi
,
W.
, and
Meng
,
J.
,
2019
, “
Nucleation Location and Propagation Direction of Radial and Median Cracks for Brittle Material in Scratching
,”
Ceram. Int.
,
45
(
6
), pp.
7524
7536
.
35.
Lin
,
Z.
, and
Hsu
,
Y.
,
2012
, “
A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth Using Specific Down Force Energy With an AFM Probe
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2321
2331
.
36.
Li
,
C.
,
Zhang
,
F.
,
Wu
,
Y.
, and
Zhang
,
X.
,
2020
, “
Influence of Strain Rate Effect on Material Removal and Deformation Mechanism Based on Ductile Nanoscratch Tests of Lu2O3 Single Crystal
,”
Ceram. Int.
,
44
(
17
), pp.
21486
21498
.
37.
Yan
,
J.
,
Asami
,
T.
,
Harada
,
H.
, and
Kuriyagawa
,
T.
,
2009
, “
Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining
,”
Precis. Eng.
,
33
(
4
), pp.
378
386
.
38.
Wu
,
Y. Q.
,
Huang
,
H.
,
Zou
,
J.
,
Zhang
,
L. C.
, and
Dell
,
J. M.
,
2010
, “
Nanoscratch-Induced Phase Transformation of Monocrystalline Si
,”
Scr. Mater.
,
63
(
8
), pp.
847
850
.
39.
Gassilloud
,
G.
,
Ballif
,
C.
,
Gasser
,
P.
,
Buerki
,
G.
, and
Michler
,
J.
,
2005
, “
Deformation Mechanisms of Silicon During Nanoscratching
,”
Phys. Status Solidi A-Appl. Mater. Sci.
,
202
(
15
), pp.
2858
2869
.
40.
Yan
,
J.
,
Asami
,
T.
, and
Kuriyagawa
,
T.
,
2008
, “
Nondestructive Measurement of Machining-Induced Amorphous Layers in Single-Crystal Silicon by Laser Micro-Raman Spectroscopy
,”
Precis. Eng.
,
32
(
3
), pp.
186
195
.
41.
Sumitomo
,
T.
,
Huang
,
H.
,
Zhou
,
L.
, and
Shimizu
,
J.
,
2011
, “
Nanogrinding of Multi-Layered Thin Film Amorphous Si Solar Panels
,”
Int. J. Mach. Tools Manuf.
,
51
(
10–11
), pp.
797
805
.
42.
Rao
,
X.
,
Zhang
,
F.
,
Lu
,
Y.
,
Luo
,
X.
, and
Chen
,
F.
,
2020
, “
Surface and Subsurface Damage of Reaction-Bonded Silicon Carbide Induced by Electrical Discharge Diamond Grinding
,”
Int. J. Mach. Tools Manuf.
,
154
, p.
103564
.
43.
Minor §
,
A. M.
,
Lilleodden
,
E. T.
,
Jin
,
M.
,
Stach
,
E. A.
,
Chrzan
,
D. C.
, and
Morris
,
J. W.
,
2005
, “
Room Temperature Dislocation Plasticity in Silicon
,”
Philos. Mag.
,
85
(
2–3
), pp.
323
330
.
44.
Shi
,
Z.
,
Zhang
,
J.
,
Zhao
,
Q.
,
Guo
,
B.
, and
Wang
,
H.
,
2020
, “
Transmission Electron Microscopy (TEM) Study of Anisotropic Surface Damages in Micro-Cutting Polycrystalline Aluminate Magnesium Spinel (PAMS) Crystals
,”
Ceram. Int.
,
46
(
12
), pp.
20570
20575
.
45.
Li
,
C.
,
Li
,
X.
,
Wu
,
Y.
,
Zhang
,
F.
, and
Huang
,
H.
,
2019
, “
Deformation Mechanism and Force Modelling of the Grinding of YAG Single Crystals
,”
Int. J. Mach. Tools Manuf.
,
143
, pp.
23
37
.
46.
Liu
,
R.
,
Wang
,
M.
,
Li
,
Z.
,
Cao
,
P.
,
Yuan
,
T.
, and
Zhu
,
H.
,
2020
, “
Developing a High-Strength Al-Mg-Si-Sc-Zr Alloy for Selective Laser Melting: Crack-Inhibiting and Multiple Strengthening Mechanisms
,”
Acta Mater.
,
193
, pp.
83
98
.
47.
Li
,
J.
,
Fang
,
Q.
,
Zhang
,
L.
, and
Liu
,
Y.
,
2015
, “
Subsurface Damage Mechanism of High Speed Grinding Process Insingle Crystal Silicon Revealed by Atomistic Simulations
,”
Appl. Surf. Sci.
,
324
, pp.
464
474
.
48.
Fang
,
F.
,
Xu
,
F.
, and
Lai
,
M.
,
2015
, “
Size Effect in Material Removal by Cutting at Nano Scale
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
591
598
.
49.
Li
,
C.
,
Zhang
,
F.
, and
Piao
,
Y.
,
2019
, “
Strain-Rate Dependence of Surface/Subsurface Deformation Mechanisms During Nanoscratching Tests of GGG Single Crystal
,”
Ceram. Int.
,
45
(
12
), pp.
15015
15024
.
50.
Goel
,
S.
,
Kovalchenko
,
A.
,
Stukowski
,
A.
, and
Cross
,
G.
,
2016
, “
Influence of Microstructure on the Cutting Behaviour of Silicon
,”
Acta Mater.
,
105
, pp.
464
478
.
51.
Chavoshi
,
S.
,
Xu
,
S.
, and
Luo
,
X.
,
2016
, “
Dislocation-Mediated Plasticity in Silicon During Nanometric Cutting: A Molecular Dynamics Simulation Study
,”
Mater. Sci. Semicond. Process.
,
51
, pp.
60
70
.
52.
Goel
,
S.
,
Luo
,
X.
,
Agrawal
,
A.
, and
Reuben
,
R.
,
2015
, “
Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
131
164
.
You do not currently have access to this content.