Abstract

This study investigates virgin and recycled high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites using thermophysical and mechanical characterization techniques to generate knowledge and understand the recyclability of these composites. First, virgin samples with 0.1–5 wt% of MWCNTs were prepared by injection molding. Then, the HDPE/MWCNT composite waste, selectively collected based on the nanotube wt%, was mechanically recycled and successively reprocessed by injection molding. The experimental results show that the degradation process of the end-user properties (mechanical and electrical properties) depends on the MWCNT loading. The higher the carbon nanotube loading, the higher the degradation of the end-user properties. The HDPE/MWCNT composites were found to be resistant to degradation at carbon nanotube loadings below the percolation threshold (located around 3 wt%). In contrast, the recycled HDPE/MWCNT composites with 5 wt% showed a reduction in viscosity, mechanical and electrical properties with recycling. After four reprocessing cycles, degradation in the Young modulus (−35%), tensile strength (−25%), elongation at break (−60%), and electrical conductivity (−2 orders of magnitude) of the HDPE/MWCNT composite with 5 wt% was observed as compared with the virgin composite. From an industrial perspective, it is feasible to recycle HDPE/MWCNT composite waste by mechanical recycling and reuse it to manufacture products with favorable mechanical properties, covering insulating, antistatic and semiconducting ranges depending on the MWCNT loading, owing to the protective effect of carbon nanotubes against thermomechanical degradation.

References

1.
European Commission
,
2020
, “
A New Circular Economy Action Plan: For a Cleaner and More Competitive Europe
,” https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0098&from=EN
2.
Ellen MacArthur Foundation, and World Economic Forum
,
2016
, “
The New Plastics Economy: Rethinking the Future of Plastics
,” First Published on January, 19, https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics
3.
Ignatyev
,
I. A.
,
Thielemans
,
W.
, and
Beke
,
B. V.
,
2014
, “
Recycling of Polymers: A Review
,”
ChemSusChem
,
7
(
6
), pp.
1579
1593
.
4.
Rigamonti
,
L.
,
Grosso
,
M.
,
Møller
,
J.
,
Martinez Sanchez
,
V.
,
Magnani
,
S.
, and
Christensen
,
T. H.
,
2014
, “
Environmental Evaluation of Plastic Waste Management Scenarios
,”
Resour. Conserv. Recycl.
,
85
, pp.
42
53
.
5.
Ragaert
,
K.
,
Delva
,
L.
, and
Van Geem
,
K.
,
2017
, “
Mechanical and Chemical Recycling of Solid Plastic Waste
,”
Waste Manage.
,
69
, pp.
24
58
.
6.
Dahlbo
,
H.
,
Poliakova
,
V.
,
Mylläri
,
V.
,
Sahimaa
,
O.
, and
Anderson
,
R.
,
2018
, “
Recycling Potential of Post-Consumer Plastic Packaging Waste in Finland
,”
Waste Manage.
,
71
, pp.
52
61
.
7.
McClory
,
C.
,
Chin
,
S. J.
, and
McNally
,
T.
,
2009
, “
Polymer/Carbon Nanotube Composites
,”
Aust. J. Chem.
,
62
(
8
), pp.
762
785
.
8.
McNally
,
T.
, and
Pötschke
,
P.
,
2011
,
Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications
,
Woodhead Publishing
,
Cambridge, UK
.
9.
Grady
,
B. P.
,
2011
,
Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
,
John Wiley & Sons
,
New York
.
10.
Choudhary
,
V.
, and
Gupta
,
A.
,
2011
, “Polymer/Carbon Nanotube Nanocomposites,”
Carbon Nanotubes: Polymer Nanocomposites
,
S.
Yellampalli
, ed.,
Intechopen
,
London
.
11.
Markets and Markets Research Private Ltd.
,
2018
, “
Carbon Nanotubes (CNT) Market by Type (Single, Multi Walled), Method (Chemical Vapor Deposition, Catalytic Chemical Vapor Deposition, High Pressure Carbon Monoxide), Application (Electronics, Chemical, Batteries, Energy, Medical)—Global Forecast to 2023
,” https://www.marketsandmarkets.com/Market-Reports/carbon-nanotubes
12.
Hedayati
,
A.
,
Barnett
,
C. J.
,
Swan
,
G.
, and
White
,
O. A.
,
2019
, “
Chemical Recycling of Consumer-Grade Black Plastic Into Electrically Conductive Carbon Nanotubes
,”
C
,
5
(
2
), p.
32
.
13.
Zare
,
Y.
,
2013
, “
Recent Progress on Preparation and Properties of Nanocomposites From Recycled Polymers: A Review
,”
Waste Manage.
,
33
(
3
), pp.
598
604
.
14.
Zhang
,
J.
,
Panwar
,
A.
,
Bello
,
D.
,
Jozokos
,
T.
,
Isaacs
,
J. A.
,
Barry
,
C.
, and
Mead
,
J.
,
2016
, “
The Effects of Recycling on the Properties of Carbon Nanotube-Filled Polypropylene Composites and Worker Exposures
,”
Environ. Sci.: Nano
,
3
(
2
), pp.
409
417
.
15.
Gao
,
J. L.
,
Liu
,
Y. H.
, and
Li
,
D. M.
,
2011
, “
Preparation and Properties of Recycled Polypropylene/Carbon Nanotube Composites
,”
Adv. Mat. Res.
,
279
, pp.
106
110
.
16.
Stan
,
F.
,
Sandu
,
I. L.
,
Fetecau
,
C.
, and
Rosculet
,
R. T.
,
2017
, “
Effect of Reprocessing on the Rheological, Electrical and Mechanical Properties of Polypropylene/Carbon Nanotube Composites
,”
ASME J. Micro- Nano-Manuf.
,
5
(
2
), p.
021005
.
17.
Stan
,
F.
,
Stanciu
,
N. V.
,
Fetecau
,
C.
, and
Sandu
,
I. L.
,
2019
, “
Mechanical Recycling of Low-Density Polyethylene/Carbon Nanotube Composites and its Effect on Material Properties
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091004
.
18.
Svensson
,
S.
,
Åkesson
,
D.
, and
Bohlén
,
M.
,
2020
, “
Reprocessing of High Density Polyethylene Reinforced With Carbon Nanotubes
,”
J. Polym. Environ.
,
28
(
7
), pp.
1967
1973
.
19.
Nanocyl
,
2016
, “
Technical Data Sheet: Plasticyl HDPE1501
,” https://www.nanocyl.com/product/plasticyl-hdpe1501
20.
Borealis
,
2017
, “
Product Data Sheet: BormedTM HE9621-PH
,” https://www.borealisgroup.com/product/bormed-he9621-ph
21.
Stan
,
F.
,
Rosculet
,
R. T.
, and
Fetecau
,
C.
,
2019
, “
Direct Current Method with Reversal Polarity for Electrical Conductivity Measurement of TPU/MWCNT Composites
,”
Measurement
,
136
, pp.
345
355
.
22.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
23.
Kodjie
,
S. L.
,
Li
,
L.
,
Li
,
B.
,
Cai
,
W.
,
Li
,
C. Y.
, and
Keating
,
M.
,
2006
, “
Morphology and Crystallization Behavior of HDPE/CNT Nanocomposite
,”
J. Macromol. Sci., Part B: Phys.
,
45
(
2
), pp.
231
245
.
24.
Kanagaraj
,
S.
,
Varanda
,
F. R.
,
Zhil’tsova
,
T. V.
,
Oliveira
,
M. S. A.
, and
Simões
,
J. A. O.
,
2007
, “
Mechanical Properties of High Density Polyethylene/Carbon Nanotube Composites
,”
Compos. Sci. Technol.
,
67
(
15–16
), pp.
3071
3077
.
25.
Vega
,
J. F.
,
Martinez-Salazar
,
J.
,
Trujillo
,
M.
,
Arnal
,
M. L.
,
Müller
,
A. J.
,
Bredeau
,
S.
, and
Duois
,
P.
,
2009
, “
Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites
,”
Macromolecules
,
42
(
13
), pp.
4719
4727
.
26.
Valentino
,
O.
,
Sarno
,
M.
,
Rainone
,
N. G.
,
Nobile
,
M. R.
,
Ciambelli
,
P.
,
Neitzert
,
H. C.
, and
Simon
,
G. P.
,
2008
, “
Influence of the Polymer Structure and Nanotube Concentration on the Conductivity and Rheological Properties of Polyethylene/CNT Composites
,”
Phys. E
,
40
(
7
), pp.
2440
2445
.
27.
Han
,
M. S.
,
Lee
,
Y. K.
,
Lee
,
H. S.
,
Yun
,
C. H.
, and
Kim
,
W. N.
,
2009
, “
Electrical, Morphological and Rheological Properties of Carbon Nanotube Composites With Polyethylene and Poly(Phenylene Sulfide) by Melt Mixing
,”
Chem. Eng. Sci.
,
64
(
22
), pp.
4649
4656
.
28.
Xiang
,
D.
,
Harkin-Jones
,
E.
, and
Linton
,
D.
,
2015
, “
Characterization and Structure-Property Relationship of Melt-Mixed High Density Polyethylene/Multi-walled Carbon Nanotube Composites Under Extensional Deformation
,”
RSC Adv.
,
5
(
59
), pp.
47555
47568
.
29.
Pinheiro
,
L. A.
,
Chinelatto
,
M. A.
, and
Canevarolo
,
S. V.
,
2004
, “
The Role of Chain Scission and Chain Branching in High Density Polyethylene During Thermo-Mechanical Degradation
,”
Polym. Degrad. Stab.
,
86
(
3
), pp.
445
453
.
30.
Kealy
,
T. J.
,
2009
, “
Rheological Analysis of the Degradation of HDPE during Consecutive Processing Steps and for Different Processing Conditions
,”
J. Appl. Polym. Sci.
,
112
(
2
), pp.
639
648
.
31.
Oblak
,
P.
,
Gonzalez-Gutierrez
,
J.
,
Zupančič
,
B.
,
Aulova
,
A.
, and
Emri
,
I.
,
2015
, “
Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene
,”
Polym. Degrad. Stab.
,
114
, pp.
133
145
.
32.
Yazdani
,
H.
,
Ghasemi
,
H.
,
Wallace
,
C.
, and
Hatami
,
K.
,
2019
, “
Mechanical Properties of Carbon Nanotube-Filled Polyethylene Composites: A Molecular Dynamics Simulation Study
,”
Polym. Compos.
,
40
(
S2
), pp.
E1850
E1861
.
33.
Stauffer
,
D.
, and
Aharony
,
A.
,
1994
,
Introduction to Percolation Theory
,
Taylor & Francis
,
London, UK
.
34.
Mora
,
A.
,
Verma
,
P.
, and
Kumar
,
S.
,
2020
, “
Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling
,”
Composites, Part B
,
183
, p.
107600
.
35.
Alig
,
I.
,
Pötschke
,
P.
,
Lellinger
,
D.
,
Skipa
,
T.
,
Pegel
,
S.
,
Kasaliwal
,
G. R.
, and
Villmow
,
T.
,
2012
, “
Establishment, Morphology and Properties of Carbon Nanotube Networks in Polymer Melts
,”
Polymer
,
53
(
1
), pp.
4
28
.
You do not currently have access to this content.