Abstract

The effects of Ti–6Al–4V part size on its temperature distribution during the blown-powder directed energy deposition (DED) process were investigated through dual-thermographic monitoring and a unique modeling technique. Results demonstrate that the duration of dwell times presented to be a significant contributing factor affecting the rate at which a steady-state temperature field is achieved. Longer thin walls took significantly more layers/time to achieve a uniform temperature profile. Maximum and average melt pool temperatures appear to be near independent of part size at steady-state. Finite element simulation results showed that a quasi-steady melt pool temperature may be unique to a layer, especially during earlier cladding processes near the substrate and that the layer-wise steady melt pool was achieved within the first few seconds of track scanning. A proposed fin modeling-based temperature distribution was found to predict the thermal profile in a “substrate affected zone” (SAZ) along the scan direction within 5%. A method to predict the onset of the SAZ has also been proposed. This work demonstrates that process parameters used for the DED of component volumes are not necessarily optimal for thin-walled structures due to variation in thermal capacity.

References

1.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smugeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
,
1996
, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Proceedings of the 7th Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
125
132
.
2.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Smugeresky
,
J. E.
,
Hofmeister
,
W. H.
,
Wert
,
M. J.
, and
Nelson
,
D. V.
,
1999
, “
Understanding Thermal Behavior in the LENS Process
,”
Mater. Des.
,
20
(
2–3
), pp.
107
113
.
3.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Seely
,
D. W.
,
2015
, “
Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel
,”
Mater. Sci. Eng., A
,
644
, pp.
171
183
.
4.
Kelly
,
S. M.
, and
Kampe
,
S. L.
,
2004
, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part II. Thermal Modeling
,”
Metall. Mater. Trans. A
,
35
(
6
), pp.
1861
1867
.
5.
Qiu
,
C.
,
Ravi
,
G. A.
,
Dance
,
C.
,
Ranson
,
A.
,
Dilworth
,
S.
, and
Attallah
,
M. M.
,
2015
, “
Fabrication of Large Ti–6Al–4V Structures by Direct Laser Deposition
,”
J. Alloys Compd.
,
629
, pp.
351
361
.
6.
Keist
,
J. S.
, and
Palmer
,
T. A.
,
2016
, “
Role of Geometry on Properties of Additively Manufactured Ti-6Al-4V Structures Fabricated Using Laser Based Directed Energy Deposition
,”
Mater. Des.
,
106
, pp.
482
494
.
7.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. Am. Soc. Mech. Eng.
,
68
(
8
), pp.
849
866
.
8.
Bontha
,
S.
, and
Klingbeil
,
N. W.
,
2003
, “
Thermal Process Maps for Controlling Microstructure in Laser-Based Solid Freeform Fabrication
,”
14th Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
219
226
.
9.
Vasinonta
,
A.
,
Beuth
,
J.
, and
Griffith
,
M.
,
1999
, “
Process Maps for Laser Deposition of Thin-Walled Structures
,”
Proceedings of the 10th Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 9–11
, pp.
383
392
.
10.
Beuth
,
J.
, and
Klingbeil
,
N.
,
2001
, “
The Role of Process Variables in Laser-Based Direct Metal Solid Freeform Fabrication
,”
JOM
,
53
(
9
), pp.
36
39
.
11.
Nunes
,
A. C.
,
1983
, “
An Extended Rosenthal Weld Model
,”
Weld. J.
,
62
(
6
), pp.
165s
170s
.
12.
Klingbeil
,
N. W.
,
Bontha
,
S.
,
Brown
,
C. J.
, and
Gaddam
,
D. R.
,
2004
, “
Effects of Process Variables and Size Scale on Solidification Microstructure in Laser-Based Solid Freeform Fabrication of Ti-6Al-4V
,”
15th International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 2–4
, pp.
92
103
.
13.
Gockel
,
J.
,
Klingbeil
,
N.
, and
Bontha
,
S.
,
2016
, “
A Closed-Form Solution for the Effect of Free Edges on Melt Pool Geometry and Solidification Microstructure in Additive Manufacturing of Thin-Wall Geometries
,”
Metall. Mater. Trans. B
,
47
(
2
), pp.
1400
1408
.
14.
Ondrej
,
N.
,
Ocelík
,
V.
,
Palavra
,
A.
, and
Hosson
,
J. T. M.
,
2014
, “
The Prediction of Coating Geometry From Main Processing Parameters in Laser Cladding
,”
Phys. Procedia
,
56
, pp.
220
227
.
15.
Pinkerton
,
A. J.
,
2007
, “
An Analytical Model of Beam Attenuation and Powder Heating During Coaxial Laser Direct Metal Deposition
,”
J. Phys. D: Appl. Phys.
,
40
(
23
), pp.
7323
7334
.
16.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4 V
,”
Addit. Manuf.
,
5
, pp.
9
19
.
17.
Gouge
,
M. F.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Modeling Forced Convection in the Thermal Simulation of Laser Cladding Processes
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
307
320
.
18.
Ye
,
Q.
, and
Chen
,
S.
,
2017
, “
Numerical Modeling of Metal-Based Additive Manufacturing Using Level Set Methods
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071019
.
19.
Fathi
,
A.
,
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Durali
,
M.
,
2006
, “
Prediction of Melt Pool Depth and Dilution in Laser Powder Deposition
,”
J. Phys. D: Appl. Phys.
,
39
(
12
), pp.
2613
2623
.
20.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.
21.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-situ Process Monitoring and In-situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
22.
Nassar
,
A. R.
,
Keist
,
J. S.
,
Reutzel
,
E. W.
, and
Spurgeon
,
T. J.
,
2015
, “
Intra-layer Closed-Loop Control of Build Plan During Directed Energy Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
6
, pp.
39
52
.
23.
Qiu
,
C.
,
Ravi
,
G. A.
, and
Attallah
,
M. M.
,
2015
, “
Microstructural Control During Direct Laser Deposition of a b -Titanium Alloy
,”
J. Mater. Des.
,
81
, pp.
21
30
.
24.
Berumen
,
S.
,
Bechmann
,
F.
,
Lindner
,
S.
,
Kruth
,
J. P.
, and
Craeghs
,
T.
,
2010
, “
Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies
,”
Phys. Procedia
,
5
(
B
), pp.
617
622
.
25.
Yan
,
Z.
,
Liu
,
W.
,
Tang
,
Z.
,
Liu
,
X.
,
Zhang
,
N.
, and
Li
,
M.
,
2018
, “
Review on Thermal Analysis in Laser-Based Additive Manufacturing
,”
Opt. Laser Technol.
,
106
, pp.
427
441
.
26.
Marshall
,
G. J.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2016
, “
Data Indicating Temperature Response of Ti6Al4 V Thin-Walled Structure During Its Additive Manufacture via Laser Engineered Net Shaping
,”
Data Brief
,
7
, pp.
697
703
.
27.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
.
28.
Marshall
,
G. J.
,
Thompson
,
S. M.
,
Daniewicz
,
S. R.
, and
Shamsaei
,
N.
,
2016
, “
Estimating the Effects of Part Size on Direct Laser Deposition Parameter Selection via a Thermal Resistance Network Approach
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 8–10
, pp.
350
364
.
29.
Liu
,
S.
,
Farahmand
,
P.
, and
Kovacevic
,
R.
,
2014
, “
Optical Monitoring of High Power Direct Diode Laser Cladding
,”
Opt. Laser Technol.
,
64
, pp.
363
376
.
30.
Craig
,
J. E.
,
Wakeman
,
T.
,
Grylls
,
R.
, and
Bullen
,
J.
,
2011
, “Online Imaging Pyrometer for Laser Deposition Processing,”
Sensors, Sampling, and Simulation for Process Control
,
B. G.
Thomas
,
J. A.
Yurko
, and
L.
Zhang
, eds.,
The Minerals, Metals & Materials Society
,
Pittsburgh, PA
, pp.
103
110
.
31.
Eagar
,
T. W.
, and
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
32.
Basak
,
D.
,
Overfelt
,
R. A.
, and
Wang
,
D.
,
2003
, “
Measurement of Specific Heat Capacity and Electrical Resistivity of Industrial Alloys Using Pulse Heating Techniques
,”
Int. J. Thermophys.
,
24
(
6
), pp.
1721
1733
.
33.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M. H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6 V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.
34.
Wang
,
L.
, and
Felicelli
,
S.
,
2006
, “
Analysis of Thermal Phenomena in LENSTM Deposition
,”
Mater. Sci. Eng., A
,
435–436
, pp.
625
631
.
35.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2001
, “
Thermal Resistance Models for Non-Circular Moving Heat Sources on a Half Space
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
624
632
.
36.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed. Binder Ready Version ed.,
Wiley
,
Chichester
.
You do not currently have access to this content.