Abstract

The objective of this research is to study an effective thermal data stream prediction method for additive manufacturing (AM) processes using thermal image streams in a layer-wise manner. Reliable physics-based models have been developed to delineate the underlying thermomechanical dynamics of AM processes. However, the computational cost is extremely high. We proposed a tensor-based surrogate modeling methodology to predict the layer-wise relationship in thermal data stream of the AM parts, which is time efficient compared to available physics-based prediction models. We constructed a network tensor structure for freeform shapes based on thermal image streams obtained in metal-based AM processes. Then, we simplified the network tensor structure by concatenating images to reach a layer-wise structure. Subsequent layers were predicted based on the antecedent layer using the tensor regression model. A generalized multilinear structure, called the higher order partial least squares (HOPLS), was used to estimate the tensor regression model parameters. Through the proposed method, high-dimensional thermal histories of AM components were predicted accurately in a computationally efficient manner. Prediction performance indices (i.e., Q2=0.999 and root-mean-square errors of prediction (RMSEP) = 31.212 °C) demonstrated a significantly more efficient layer-wise prediction of thermal data stream—a larger Q2 (0 ≤ Q2 ≤ 1) and a smaller RMSEP indicated a better prediction performance. The proposed thermal data stream prediction was validated on simulated thermal images from finite element (FE) simulations.

References

1.
National Research Council
,
2014
,
3D Printing in Space
,
National Academies Press
,
Washington, DC
.
2.
Wei
,
H. L.
,
Mukherjee
,
T.
,
Zhang
,
W.
,
Zuback
,
J. S.
,
Knapp
,
G. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2021
, “
Mechanistic Models for Additive Manufacturing of Metallic Components
,”
Prog. Mater. Sci.
,
116
, p.
100703
.
3.
Ge
,
J.
,
Lin
,
J.
,
Lei
,
Y.
, and
Fu
,
H.
,
2018
, “
Location-Related Thermal History, Microstructure, and Mechanical Properties of Arc Additively Manufactured 2Cr13 Steel Using Cold Metal Transfer Welding
,”
Mater. Sci. Eng. A
,
715
(
7
), pp.
144
153
.
4.
Mozaffar
,
M.
,
Paul
,
A.
,
Al-Bahrani
,
R.
,
Wolff
,
S.
,
Choudhary
,
A.
,
Agrawal
,
A.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2018
, “
Data-Driven Prediction of the High-Dimensional Thermal History in Directed Energy Deposition Processes via Recurrent Neural Networks
,”
Manufac. Lett.
,
18
, pp.
35
39
.
5.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
6.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
.
7.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2019
, “
Statistical Modal Analysis for Out-of-Plane Deviation Prediction in Additive Manufacturing Based on Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111011
.
8.
Mercelis
,
P.
, and
Kruth
,
J. P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
.
9.
Zäh
,
M. F.
, and
Lutzmann
,
S.
,
2010
, “
Modelling and Simulation of Electron Beam Melting
,”
Production Engineering
,
4
(
1
).
10.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D: Appl. Phys.
,
37
(
14
), pp.
1885
1895
.
11.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.
12.
Chandrasekhar
,
N.
,
Vasudevan
,
M.
,
Bhaduri
,
A. K.
, and
Jayakumar
,
T.
,
2013
, “
Intelligent Modeling for Estimating Weld Bead Width and Depth of Penetration From Infra-Red Thermal Images of the Weld Pool
,”
J. Intell. Manuf.
,
26
(
1
).
13.
Zhao
,
Q.
,
Caiafa
,
C. F.
,
Mandic
,
D. P.
,
Chao
,
Z. C.
,
Nagasaka
,
Y.
,
Fujii
,
N.
,
Zhang
,
L.
, and
Cichocki
,
A.
,
2013
, “
Higher Order Partial Least Squares (HOPLS): A Generalized Multilinear Regression Method
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
7
).
14.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
).
15.
Stender
,
M. E.
,
Beghini
,
L. L.
,
Sugar
,
J. D.
,
Veilleux
,
M. G.
,
Subia
,
S. R.
,
Smith
,
T. R.
,
Marchi
,
C. W. S.
,
Brown
,
A. A.
, and
Dagel
,
D. J.
,
2018
, “
A Thermal-Mechanical Finite Element Workflow for Directed Energy Deposition Additive Manufacturing Process Modeling
,”
Addit. Manuf.
,
21
, pp.
556
566
.
16.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Solberg
,
J. M.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.
17.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121006
.
18.
Guerrini
,
G.
,
Lutey
,
A. H. A.
,
Melkote
,
S. N.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Dry Generating Gear Grinding: Hierarchical Two-Step Finite Element Model for Process Optimization
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061005
.
19.
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
Multiscale Modeling of Powder Bed–Based Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
93
123
.
20.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
,
Newman
,
C. K.
,
Haut
,
T.
,
Bakosi
,
J.
,
Gibbs
,
J. W.
,
Livescu
,
V.
,
vander Wiel
,
S. A.
,
Clarke
,
A. J.
,
Schraad
,
M. W.
,
Blacker
,
T.
,
Lim
,
H.
,
Rodgers
,
T.
,
Owen
,
S.
,
Abdeljawad
,
F.
,
Madison
,
J.
,
Anderson
,
A. T.
,
Fattebert
,
J. L.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Khairallah
,
S. A.
, and
Walton
,
O.
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
.
21.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
22.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
1
),
96
117
.
23.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
24.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2015
, “
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing
,”
International Solid Free Form Fabrication Symposium
,
Austin, TX
.
25.
Raghavan
,
N.
,
Dehoff
,
R.
,
Pannala
,
S.
,
Simunovic
,
S.
,
Kirka
,
M.
,
Turner
,
J.
,
Carlson
,
N.
, and
Babu
,
S. S.
,
2016
, “
Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
112
, pp.
303
314
.
26.
Ammer
,
R.
,
Markl
,
M.
,
Ljungblad
,
U.
,
Körner
,
C.
, and
Rüde
,
U.
,
2014
, “
Simulating Fast Electron Beam Melting With a Parallel Thermal Free Surface Lattice Boltzmann Method
,”
Comput. Math. Appl.
,
67
(
2
).
27.
Johnson
,
K. L.
,
Rodgers
,
T. M.
,
Underwood
,
O. D.
,
Madison
,
J. D.
,
Ford
,
K. R.
,
Whetten
,
S. R.
,
Dagel
,
D. J.
, and
Bishop
,
J. E.
,
2018
, “
Simulation and Experimental Comparison of the Thermo-Mechanical History and 3D Microstructure Evolution of 304L Stainless Steel Tubes Manufactured Using LENS
,”
Comput. Mech.
,
61
(
5
), pp.
559
574
.
28.
Roy
,
M.
, and
Wodo
,
O.
,
2020
, “
Data-Driven Modeling of Thermal History in Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101017
.
29.
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2013
, “
A New Finite Element Solver Using Numerical Eigen Modes for Fast Simulation of Additive Manufacturing Processes
,”
24th International SFF Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
August
.
30.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
31.
Stockman
,
T.
,
Schneider
,
J. A.
,
Walker
,
B.
, and
Carpenter
,
J. S.
,
2019
, “
A 3D Finite Difference Thermal Model Tailored for Additive Manufacturing
,”
JOM
,
71
(
3
), pp.
1117
1126
.
32.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Michopoulos
,
J. G.
, and
Iliopoulos
,
A. P.
,
2019
, “
Enriched Analytical Solutions for Additive Manufacturing Modeling and Simulation
,”
Addit. Manuf.
,
25
, pp.
437
447
.
33.
Ford
,
S. L.
,
2014
, “
Additive Manufacturing Technology: Potential Implications for US Manufacturing Competitiveness
,”
J. Int. Commer. Econ.
,
6
, p.
40
.
34.
Jurrens
,
K.
,
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,”
Energetics Incorporated for the National Institute of Standards and Technology, U.S. Department of Commerce
,
Columbia, MD
,
May
.
35.
Mani
,
M.
,
Lane
,
B.
,
Donmez
,
M. A.
,
Feng
,
S. C.
,
Moylan
,
S. P.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes
,”
NIST Interagency/Internal Report (NISTIR)
,
8036
.
36.
Shipp
,
S. S.
,
Gupta
,
N.
,
Lal
,
B.
,
Scott
,
J. A.
,
Weber
,
C. L.
,
Finnin
,
M. S.
,
Blake
,
M.
,
Newsome
,
S.
, and
Thomas
,
S.
,
2012
, “
Emerging Global Trends in Advanced Manufacturing
,” Institute for Defense Analyses, Alexandia, VA.
37.
Roy
,
M.
,
Yavari
,
R.
,
Zhou
,
C.
,
Wodo
,
O.
, and
Rao
,
P.
,
2019
, “
Prediction and Experimental Validation of Part Thermal History in the Fused Filament Fabrication Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121001
.
38.
Reza Yavari
,
M.
,
Williams
,
R. J.
,
Cole
,
K. D.
,
Hooper
,
P. A.
, and
Rao
,
P.
,
2020
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory: Experimental Validation With Laser Powder Bed Fusion Using in Situ Infrared Thermography Data
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121005
.
39.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
).
40.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
7
(
3
), pp.
116
135
.
41.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.
42.
Kamath
,
C.
, and
Fan
,
Y. J.
,
2018
, “
Regression With Small Data Sets: A Case Study Using Code Surrogates in Additive Manufacturing
,”
Knowl. Inf. Syst.
,
57
(
2
), pp.
475
493
.
43.
Tapia
,
G.
,
Johnson
,
L.
,
Franco
,
B.
,
Karayagiz
,
K.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel-Titanium Shape-Memory Alloys
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071002
.
44.
Popova
,
E.
,
Rodgers
,
T. M.
,
Gong
,
X.
,
Cecen
,
A.
,
Madison
,
J. D.
, and
Kalidindi
,
S. R.
,
2017
, “
Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data
,”
Integr. Mater. Manuf. Innov.
,
6
(
1
), pp.
54
68
.
45.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.
46.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
).
47.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
.
48.
de Lathauwer
,
L.
,
de Moor
,
B.
, and
Vandewalle
,
J.
,
2000
, “
On the Best Rank-1 and Rank-(R1, R2, ..., RN) Approximation of Higher-Order Tensors
,”
SIAM J. Matrix Anal. Appl.
,
21
(
4
).
49.
de Lathauwer
,
L.
,
2008
, “
Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness
,”
SIAM J. Matrix Anal. Appl.
,
30
(
3
), pp.
1033
1066
.
50.
Kim
,
H.
,
Zhou
,
J. X.
,
Morse
,
H. C.
, and
Park
,
H.
,
2005
, “
A Three-Stage Framework for Gene Expression Data Analysis by L1-Norm Support Vector Regression
,”
Int. J. Bioinf. Res. Appl.
,
1
(
1
).
51.
Hawkins
,
D. M.
,
Paul
,
S.
, and
Bradu
,
D.
,
1990
, “
Application of the Moore-Penrose inverse of a data matrix in multiple regression
,”
Linear Algebra and its Applications
,
127
, pp.
403
425
.
52.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
.
53.
Marshall
,
G. J.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2016
, “
Data Indicating Temperature Response of Ti–6Al–4V Thin-Walled Structure During its Additive Manufacture via Laser Engineered Net Shaping
,”
Data in Brief
,
7
, pp.
697
703
.
54.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
55.
Jelinek
,
B.
,
Young
,
W. J.
,
Dantin
,
M.
,
Furr
,
W.
,
Doude
,
H.
, and
Priddy
,
M. W.
,
2020
, “
Two-Dimensional Thermal Finite Element Model of Directed Energy Deposition: Matching Melt Pool Temperature Profile With Pyrometer Measurement
,”
J. Manuf. Process.
,
57
, pp.
187
195
.
56.
Dantin
,
M. J.
,
Furr
,
W. M.
, and
Priddy
,
M. W.
,
2018
, “
Towards an Open-Source, Preprocessing Framework for Simulating Material Deposition for a Directed Energy Deposition Process
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
August
.
57.
Hibbett
,
K.
, and
Sorensen
,
1998
, ABAQUS/Standard: User's Manual, Providence, RI.
58.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
).
You do not currently have access to this content.