Abstract

The design of multimaterial lattice structures with optimized elasticity tensor, coefficient of thermal expansion (CTE), and thermal conductivity is the main objective of the research presented in this article. In addition, the additive manufacturability of the lattice structure is addressed using a prismatic density filter to eliminate support structures, and an octant symmetry filter is used to design symmetric lattices. A density-based topology optimization model is formulated with a homogenization method and solved using a sequential linear programming method to obtain the desired unit cell geometry of the lattice structure. The optimized unit cell obtained has high mechanical stiffness, a low CTE, and low thermal conductivity. A finite element analysis is carried out on the optimized lattice structure and an equivalent cube of computed effective properties (with the same loading and boundary conditions) to validate the computed homogenized material properties. The results from the finite element analysis show that the methodology followed to generate the lattice structure is accurate. Such lattice structures with tailored material properties can be used in aerospace parts that are subjected to mechanical and thermal loads. The complex multimaterial geometry produced from the topology optimization routine presented here is intended explicitly for the manufacture of parts using the directed energy deposition process with multiple material deposition nozzles.

References

1.
Venugopal
,
V.
,
McConaha
,
M.
, and
Anand
,
S.
,
2019
, “
Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing
,
ASME
,
Erie, PA
,
June 10–14
, p.
V001T01A016
.
2.
Lakes
,
R.
,
2007
, “
Cellular Solids With Tunable Positive or Negative Thermal Expansion of Unbounded Magnitude
,”
Appl. Phys. Lett.
,
90
(
22
), p.
221905
.
3.
Steeves
,
C.
,
dos Santos e Lucato
,
S. L.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1803
1822
.
4.
Jefferson
,
G.
,
Parthasarathy
,
T. A.
, and
Kerans
,
R. J.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11
), pp.
2372
2387
.
5.
Wang
,
Q.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
.
6.
Wei
,
K.
,
Peng
,
Y.
,
Wang
,
K.
,
Duan
,
S.
,
Yang
,
X.
, and
Wen
,
W.
,
2018
, “
Three Dimensional Lightweight Lattice Structures With Large Positive, Zero and Negative Thermal Expansion
,”
Compos. Struct.
,
188
, pp.
287
296
.
7.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimization for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
8.
Arisoy
,
E. B.
,
Musuvathy
,
S.
,
Mirabella
,
L.
, and
Slavin
,
E.
,
2015
, “
Design and Topology Optimization of Lattice Structures Using Deformable Implicit Surfaces for Additive Manufacturing
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 20th Design for Manufacturing and the Life Cycle Conference; 9th International Conference on Micro- and Nanosystems
,
ASME
,
Boston, MA
,
Aug. 2–5
, p.
V004T05A003
.
9.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A. C.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components With Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
334
359
.
10.
Wang
,
Y.
,
Xu
,
H.
, and
Pasini
,
D.
,
2017
, “
Multiscale Isogeometric Topology Optimization for Lattice Materials
,”
Comput. Methods Appl. Mech. Eng.
,
316
, pp.
568
585
.
11.
Du
,
Y.
,
Li
,
H.
,
Luo
,
Z.
, and
Tian
,
Q.
,
2017
, “
Topological Design Optimization of Lattice Structures to Maximize Shear Stiffness
,”
Adv. Eng. Softw.
,
112
, pp.
211
221
.
12.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
13.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
14.
Shintani
,
K.
,
Chan
,
Y. C.
, and
Chen
,
W.
,
2018
, “Robust Multi-Material Topology Optimization for Lattice Structure Under Material Uncertainties,”
Advances in Structural and Multidisciplinary Optimization
, WCSMO 2017,
A.
Schumacher
,
T.
Vietor
,
S.
Fiebig
,
K. U.
Bletzinger
, and
K.
Maute
, eds.,
Springer
,
Cham
, pp.
1110
1123
.
15.
Stankovic
,
T.
,
Mueller
,
J.
,
Egan
,
P.
, and
Shea
,
K.
,
2015
, “
Optimization of Additively Manufactured Multi-Material Lattice Structures Using Generalized Optimality Criteria
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1A: 35th Computers and Information in Engineering Conference
,
ASME
,
Boston, MA
,
Aug. 2–5
, p.
V01AT02A026
.
16.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), pp.
5157
5167
.
17.
Grima
,
J. N.
,
Bajada
,
M.
,
Scerri
,
S.
,
Attard
,
D.
,
Dudek
,
K. K.
, and
Gatt
,
R.
,
2015
, “
Maximizing Negative Thermal Expansion via Rigid Unit Modes: A Geometry-Based Approach
,”
Proc. R. Soc. London, Ser. A
,
471
(
2179
), p.
20150188
.
18.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
19.
Correa
,
D. M.
,
Klatt
,
T.
,
Cortes
,
S.
,
Haberman
,
M.
,
Kovar
,
D.
, and
Seepersad
,
C.
,
2015
, “
Negative Stiffness Honeycombs for Recoverable Shock Isolation
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
193
200
.
20.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
21.
Milton
,
G. W.
, and
Kohn
,
R. V.
,
1988
, “
Variational Bounds on the Effective Moduli of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
36
(
6
), pp.
597
629
.
22.
Walter Rosen
,
B.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
(
2
), pp.
157
173
.
23.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
871
883
.
24.
Langelaar
,
M.
,
2016
, “
Topology Optimization for Additive Manufacturing With Controllable Support Structure Costs
,”
Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering: ECCOMAS Congress 2016, National Technical University of Athens (NTUA)
,
Greece
.
25.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
A
), pp.
60
70
.
26.
McConaha
,
M.
,
Venugopal
,
V.
, and
Anand
,
S.
,
2020
, “
Integration of Machine Tool Accessibility of Support Structures With Topology Optimization for Additive Manufacturing
,”
Procedia Manuf.
,
48
, pp.
634
642
.
27.
Morris
,
C.
,
Bekker
,
L.
,
Spadaccini
,
C.
,
Haberman
,
M.
, and
Seepersad
,
C.
,
2019
, “
Tunable Mechanical Metamaterial With Constrained Negative Stiffness for Improved Quasi-Static and Dynamic Energy Dissipation
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900163
.
28.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidisc. Optim.
,
50
(
6
), pp.
1175
1196
.
29.
Griffith
,
R. E.
, and
Stewart
,
R. A.
,
1961
, “
A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems
,”
Manage. Sci.
,
7
(
4
), pp.
379
392
.
30.
Mathworks
, “MATLAB Linprog,” https://www.mathworks.com/help/optim/ug/linprog.html, Accessed October 7, 2020.
31.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
32.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
33.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
, “Chapter 6—Shape Functions, Derivatives, and Integration,”
The Finite Element Method: Its Basis and Fundamentals
, 7th ed.,
O. C.
Zienkiewicz
,
R. L.
Taylor
, and
J. Z.
Zhu
, eds.,
Butterworth-Heinemann
,
Oxford
, pp.
151
209
.
34.
Rozvany
,
G.
,
2000
, “
The SIMP Method in Topology Optimization—Theoretical Background, Advantages and New Applications
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
American Institute of Aeronautics and Astronautics, Reston, VA
.
35.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods. Eng.
,
50
(
9
), pp.
2143
2158
.
36.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
, 2nd ed.,
Springer-Verlag
,
New York
, pp.
245
268
.
37.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
38.
Mhapsekar
,
K.
,
McConaha
,
M.
, and
Anand
,
S.
,
2018
, “
Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051017
.
39.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
40.
Tang
,
Y.
,
Kurtz
,
A.
, and
Zhao
,
Y. F.
,
2015
, “
Bidirectional Evolutionary Structural Optimization (BESO) Based Design Method for Lattice Structure to Be Fabricated by Additive Manufacturing
,”
Comput.-Aided Des.
,
69
, pp.
91
101
.
41.
Maravola
,
M.
,
Cortes
,
P.
,
Juhasz
,
M.
,
Rutana
,
D.
,
Kowalczyk
,
B.
,
Conner
,
B.
, and
MacDonald
,
E.
,
2018
, “
Development of a Low Coefficient of Thermal Expansion Composite Tooling via 3D Printing
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing
,
ASME
,
Pittsburgh, PA
,
Nov. 9–15
. p.
V002T02A090
. http://dx.doi.org/10.1115/IMECE2018-88594
42.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization
,
Springer
,
Berlin
.
43.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
44.
Haftka
,
R. T.
,
Gürdal
,
Z.
, and
Gladwell
,
G. M. L.
,
2010
,
Elements of Structural Optimization
,
Springer Netherlands
,
Dordrecht
.
45.
McConaha
,
M.
,
Venugopal
,
V.
, and
Anand
,
S.
,
2021
, “
Design Tool for Topology Optimization of Self Supporting Variable Density Lattice Structures for Additive Manufacturing
,”
ASME. J. Manuf. Sci. Eng.
,
143
(
7
), p.
071001
.
46.
Odegard
,
G. M.
,
2004
, “
Constitutive Modeling of Piezoelectric Polymer Composites
,”
Acta Mater.
,
52
(
18
), pp.
5315
5330
.
You do not currently have access to this content.