Abstract

The five-axis machining of a free-form surface often contains the reversal of a rotary axis’ rotation direction with linear axis synchronized with it. This paper proposes a new machining test to quantitatively evaluate the influence of the reversal of rotation direction on the surface geometry and roughness. In the five-axis machining, the trajectory of tool position and orientation is first given in the workpiece coordinate system (WCS) by the computer-aided manufacturing (cam) software, and the computerized numerical control (CNC) system converts it to the machine coordinate system (MCS) to calculate command trajectories. This paper clarifies that the tool path smoothing in the MCS can potentially cause a large contour error because of the dynamic synchronization error of rotary and linear axes. Although some academic works in the literature presented the smoothing in the WCS, many commercial CNC systems still employ the smoothing in the MCS, partly because machine tool users or makers do not clearly see how significant this influence can be on the machining accuracy. The proposed machining test enables a user to quantitatively evaluate it. The machining experiment shows that the geometric error of the finished test piece was as large as 0.16 mm under the conventional smoothing in a commercial CNC system, which can be significantly larger than the influence of other typical geometric errors of a five-axis machine tool. This paper shows, by numerical simulation, that the smoothing in the WCS can completely eliminate this contour error.

References

1.
Ibaraki
,
S.
, and
Knapp
,
W.
,
2013
, “
Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review
,”
Int. J. Autom. Technol.
,
6
(
2
), pp.
110
124
.
2.
ISO 10791-6
,
2014
, “Test Conditions for Machining Centres—Part 6: Accuracy of Speeds and Interpolations.”
3.
Xu
,
P.
,
Cheung
,
B.
, and
Li
,
B.
,
2019
, “
A Complete, Continuous and Minimal POE-Based Model for Five-Axis Machine Tools Calibration With a Single Laser Tracker, a R-Test or a Double Ball-Bar
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041010
.
4.
Hong
,
C.
,
Ibaraki
,
S.
, and
Oyama
,
C.
,
2012
, “
Graphical Presentation of Error Motions of Rotary Axes on a Five-Axis Machine Tool by Static r-Test With Separating the Influence of Squareness Errors of Linear Axes
,”
Int. J. Mach. Tools Manuf.
,
59
, pp.
24
33
.
5.
Ding
,
W.
,
Zhu
,
X.
, and
Huang
,
X.
,
2016
, “
Effect of Servo and Geometric Errors of Tilting-Rotary Tables on Volumetric Errors in Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
37
44
.
6.
Wang
,
W.
,
Jiang
,
Z.
,
Li
,
Q.
, and
Tao
,
W.
,
2015
, “
A New Test Part to Identify Performance of Five-Axis Machine Tool-Part II Validation of S Part
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
739
756
.
7.
Cripps
,
R. J.
,
Cross
,
B.
,
Hunt
,
M.
, and
Mullineux
,
G.
,
2017
, “
Singularities in Five-Axis Machining: Cause, Effect and Avoidance
,”
Int. J. Mach. Tools Manuf.
,
116
, pp.
40
51
.
8.
Jeon
,
J. W.
, and
Ha
,
Y. Y.
,
2000
, “
A Generalized Approach for the Acceleration and Deceleration of Industrial Robots and CNC Machine Tools
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
133
139
.
9.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
10.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2019
, “
A Real-Time C 3 Continuous Local Corner Smoothing and Interpolation Algorithm for CNC Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041004
.
11.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2005
, “
Quintic Spline Interpolation With Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
339
349
.
12.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
044501
.
13.
Chen
,
C. S.
, and
Lee
,
A. C.
,
1998
, “
Design of Acceleration/Deceleration Profiles in Motion Control Based on Digital Fir Filters
,”
Int. J. Mach. Tools Manuf.
,
38
(
7
), pp.
799
825
.
14.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2012
, “
FIR Filters for Online Trajectory Planning With Time- and Frequency-Domain Specifications
,”
Control Eng. Pract.
,
20
(
12
), pp.
1385
1399
.
15.
Tajima
,
S.
,
Sencer
,
B.
, and
Shamoto
,
E.
,
2018
, “
Accurate Interpolation of Machining Tool-Paths Based on FIR Filtering
,”
Precis. Eng.
,
52
, pp.
332
344
.
16.
Tajima
,
S.
, and
Sencer
,
B.
,
2017
, “
Global Tool-Path Smoothing for CNC Machine Tools With Uninterrupted Acceleration
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
81
95
.
17.
Hayasaka
,
T.
,
Minoura
,
K.
,
Ishizaki
,
K.
,
Shamoto
,
E.
, and
Sencer
,
B.
,
2019
, “
A Lightweight Interpolation Algorithm for Short-Segmented Machining Tool Paths to Realize Vibration Avoidance, High Accuracy, and Short Machining Time
,”
Precis. Eng.
,
59
, pp.
1
17
.
18.
Sun
,
S.
,
Sun
,
Y.
,
Xu
,
J.
, and
Lee
,
Y.
,
2018
, “
Iso-Planar Feed Vector-Fields-Based Streamline Tool Path Generation for Five-Axis Compound Surface Machining With Torus-End Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071013
.
19.
Huang
,
X.
,
Zhao
,
F.
,
Tao
,
T.
, and
Mei
,
X.
,
2020
, “
A Novel Local Smoothing Method for Five-Axis Machining With Time-Synchronization Feedrate Scheduling
,”
IEEE Access
,
8
, pp.
89185
89204
.
20.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2020
, “
A Real-Time C3 Continuous Tool Path Smoothing and Interpolation Algorithm for Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041002
.
21.
Jiang
,
Y.
,
Han
,
J.
,
Xia
,
L.
,
Lu
,
L.
,
Tian
,
X.
, and
Liu
,
H.
,
2020
, “
A Decoupled Five-Axis Local Smoothing Interpolation Method to Achieve Continuous Acceleration of Tool Axis
,”
Int. J. Adv. Manuf. Technol.
,
111
(
1–2
), pp.
449
470
.
22.
Tajima
,
S.
, and
Sencer
,
B.
,
2019
, “
Accurate Real-Time Interpolation of 5-Axis Tool-Paths With Local Corner Smoothing
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
1
15
.
23.
Landers
,
R. G.
,
Barton
,
K.
,
Devasia
,
S.
,
Kurfess
,
T.
,
Pagilla
,
P.
, and
Tomizuka
,
M.
,
2020
, “
A Review of Manufacturing Process Control
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110814
.
24.
Shih
,
Y. T.
,
Chen
,
C. S.
, and
Lee
,
A. C.
,
2002
, “
A Novel Cross-Coupling Control Design for Bi-Axis Motion
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1539
1548
.
25.
Ang
,
W. T.
,
Khosla
,
P. K.
, and
Riviere
,
C. N.
,
2007
, “
Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
134
142
.
You do not currently have access to this content.