Abstract

Arc welding of dissimilar aluminum alloys is in high demand in industry but often challenging in practice. Dissonant material properties between the base metals often lead to solidification cracking in the weld metal upon cooling. Here, we report a nano-treatment approach that infuses TiC nanoparticles into filler material mimicking commercial ER5183 to successfully join dissimilar systems of AA2024 + AA5083 and AA2024 + AA7075 with the gas-tungsten arc welding process. Welded specimens were free of hot cracking, and microstructural studies revealed globular, refined grains smaller than 20 µm in the weld metals of both systems. Mechanical properties of both systems were examined with microhardness and tensile testing, and they showed sound behavior in their as-welded conditions. Nano-treatment therefore presents a new way to reliably weld dissimilar systems that are traditionally considered unweldable.

References

1.
Cevik
,
B.
,
2018
, “
Gas Tungsten Arc Welding of 7075 Aluminum Alloy: Microstructure Properties, Impact Strength, and Weld Defects
,”
Mater. Res. Express
,
5
(
6
), p.
066540
. 10.1088/2053-1591/aacbbc
2.
Sivashanmugam
,
M.
,
Shanmugam Jothi
,
C.
,
Kumar
,
T.
, and
Sathishkumar
,
M.
,
2010
, “
Investigation of Microstructure and Mechanical Properties of GTAW and GMAW Joints on AA7075 Aluminum Alloy
,”
Front. Automob. Mech. Eng.
, pp.
241
246
. 10.1109/fame.2010.5714843
3.
Ghosh
,
M. K.
,
Kumar
,
K.
,
Kailas
,
S. V.
, and
Ray
,
A. K.
,
2010
, “
Optimization of Friction Stir Welding Parameters for Dissimilar Aluminum Alloys
,”
Mater. Des.
,
31
(
6
), pp.
3033
3037
. 10.1016/j.matdes.2010.01.028
4.
Khodir
,
S. A.
, and
Shibayanagi
,
T.
,
2008
, “
Friction Stir Welding of Dissimilar AA2024 and AA7075 Aluminum Alloys
,”
Mater. Sci. Eng. B
,
148
(
1–3
), pp.
82
87
. 10.1016/j.mseb.2007.09.024
5.
Koilraj
,
M.
,
Sundareswaran
,
V.
,
Vijayan
,
S. N.
, and
Koteswara Rao
,
S. R.
,
2012
, “
Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083—Optimization of Process Parameters Using Taguchi Technique
,”
Mater. Des.
,
42
, pp.
1
7
. 10.1016/j.matdes.2012.02.016
6.
Grujicic
,
M.
,
Arakere
,
G.
,
Pandurangan
,
B.
,
Hariharan
,
A.
,
Yen
,
C.-F.
, and
Cheeseman
,
B. A.
,
2011
, “
Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles
,”
J. Mater. Eng. Perform.
,
20
(
1
), pp.
11
23
. 10.1007/s11665-010-9650-0
7.
Mishra
,
R. S.
,
De
,
P. S.
, and
Kumar
,
N.
,
2014
, “Friction Stir Welding Configurations and Tool Selection,”
Friction Stir Welding and Processing
,
Springer International Publishing
,
Cham
, pp.
95
108
.
8.
Kou
,
S.
,
2003
, “
Solidification and Liquation Cracking Issues in Welding
,”
JOM
,
55
(
6
), pp.
37
42
. 10.1007/s11837-003-0137-4
9.
Luijendijk
,
T.
,
2000
, “
Welding of Dissimilar Aluminium Alloys
,”
J. Mater. Process. Technol.
,
103
(
1
), pp.
29
35
. 10.1016/S0924-0136(00)00415-5
10.
Pumphrey
,
W. I.
, and
Lyons
,
J. W.
,
1948
, “
Cracking During the Casting and Welding of the More Common Binary Aluminium Alloys
,”
J. Inst. Met.
,
74
, pp.
439
455
.
11.
Mousavi
,
M. G.
,
Cross
,
C. E.
,
Grong
,
Ø
, and
Hval
,
M.
,
1997
, “
Controlling Weld Metal Dilution for Optimised Weld Performance in Aluminium
,”
Sci. Technol. Weld. Join.
,
2
(
6
), pp.
275
278
. 10.1179/stw.1997.2.6.275
12.
Praveen
,
P.
, and
Yarlagadda
,
P. K. D. V.
,
2005
, “
Meeting Challenges in Welding of Aluminum Alloys Through Pulse Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1106
1112
. 10.1016/j.jmatprotec.2005.02.224
13.
Dragatogiannis
,
D. A.
,
Koumoulos
,
E. P.
,
Kartsonakis
,
I. A.
,
Pantelis
,
D. I.
,
Karakizis
,
P. N.
, and
Charitidis
,
C. A.
,
2016
, “
“Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced With TiC Nanoparticles
,”
Mater. Manuf. Process.
,
31
(
16
), pp.
2101
2114
. 10.1080/10426914.2015.1103856
14.
Fattahi
,
M.
,
Mohammady
,
M.
,
Sajjadi
,
N.
,
Honarmand
,
M.
,
Fattahi
,
Y.
, and
Akhavan
,
S.
,
2015
, “
Effect of TiC Nanoparticles on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded Aluminum Joints
,”
J. Mater. Process. Technol.
,
217
, pp.
21
29
. 10.1016/j.jmatprotec.2014.10.023
15.
Fereiduni
,
E.
,
Movahedi
,
M.
, and
Baghdadchi
,
A.
,
2018
, “
Ultrahigh-Strength Friction Stir Spot Welds of Aluminium Alloy Obtained by Fe3O4 Nanoparticles
,”
Sci. Technol. Weld. Join.
,
23
(
1
), pp.
63
70
. 10.1080/13621718.2017.1356031
16.
Huang
,
Q.
,
He
,
R.
,
Wang
,
C.
, and
Tang
,
X.
,
2019
, “
Microstructure, Corrosion and Mechanical Properties of TiC Particles/Al-5Mg Composite Fillers for Tungsten Arc Welding of 5083 Aluminum Alloy
,”
Materials (Basel)
,
12
(
18
), p.
3029
. 10.3390/ma12183029
17.
Mirjavadi
,
S. S.
,
Alipour
,
M.
,
Emamian
,
S.
,
Kord
,
S.
,
Hamouda
,
A. M.
,
Koppad
,
P. G.
, and
Keshavamurthy
,
R.
,
2017
, “
Influence of TiO2 Nanoparticles Incorporation to Friction Stir Welded 5083 Aluminum Alloy on the Microstructure, Mechanical Properties and Wear Resistance
,”
J. Alloys Compd.
,
712
, pp.
795
803
. 10.1016/j.jallcom.2017.04.114
18.
Paidar
,
M.
, and
Sarab
,
M. L.
,
2016
, “
Friction Stir Spot Welding of 2024-T3 Aluminum Alloy With SiC Nanoparticles
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
365
370
. 10.1007/s12206-015-1241-4
19.
Pantelis
,
D. I.
,
Karakizis
,
P. N.
,
Daniolos
,
N. M.
,
Charitidis
,
C. A.
,
Koumoulos
,
E. P.
, and
Dragatogiannis
,
D. A.
,
2016
, “
Microstructural Study and Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H111 and AA6082-T6 Reinforced With SiC Nanoparticles
,”
Mater. Manuf. Process.
,
31
(
3
), pp.
264
274
. 10.1080/10426914.2015.1019095
20.
Ramkumar
,
K. R.
, and
Natarajan
,
S. R.
,
2018
, “
Investigations on Microstructure and Mechanical Properties of TiO2 Nanoparticles Addition in Al 3003 Alloy Joints by Gas Tungsten Arc Welding
,”
Mater. Sci. Eng. A
,
727
, pp.
51
60
. 10.1016/j.msea.2018.04.111
21.
Sokoluk
,
M.
,
Cao
,
C.
,
Pan
,
S.
, and
Li
,
X.
,
2019
, “
Nanoparticle-Enabled Phase Control for Arc Welding of Unweldable Aluminum Alloy 7075
,”
Nat. Commun.
,
10
(
1
). 10.1038/s41467-018-07989-y
22.
Sokoluk
,
M.
,
Yao
,
G.
,
Pan
,
S.
,
Cao
,
C.
, and
Li
,
X.
,
2020
, “
High Strength Nanotreated Filler Material for TIG Welding of AA6061
,”
Light Met.
,
2020
, pp.
380
385
. 10.1007/978-3-030-36408-3_54
23.
Yuan
,
J.
,
Zuo
,
M.
,
Sokoluk
,
M.
,
Yao
,
G.
,
Pan
,
S.
, and
Li
,
X.
,
2020
, “
Nanotreating High-Zinc Al–Zn–Mg–Cu Alloy by TiC Nanoparticles
,”
Light Met.
,
2020
, pp.
318
323
. 10.1007/978-3-030-36408-3_46
24.
Wegrzyn
,
J.
,
Mazur
,
M.
,
Szymański
,
A.
, and
Balcerowska
,
B.
,
1987
, “
Development of a Filler for Welding Magnesium Alloy GA8
,”
Weld. Int.
,
1
(
2
), pp.
146
150
. 10.1080/09507118709452102
25.
Lefebvre
,
F.
,
Wang
,
S. P.
,
Starink
,
M. J.
, and
Sinclair
,
I.
,
2002
, “
Microstructural Features of Fusion Welded 2024-T351
,”
Mater. Sci. Forum
,
396–402
, pp.
1555
1560
. 10.4028/www.scientific.net/MSF.396-402.1555
26.
Andrzejewski
,
D.
,
Jakubowicz
,
J.
, and
Borowski
,
J.
,
2016
, “
Structure and Properties of 7075 Aluminum Alloy Products Obtained With the KOBO Method
,”
Arch. Civ. Mech. Eng.
,
16
(
2
), pp.
217
223
. 10.1016/j.acme.2015.10.005
27.
Dong
,
B.
,
Yang
,
H.
,
Qiu
,
F.
,
Li
,
Q.
,
Shu
,
S.
,
Zhang
,
B.
, and
Jiang
,
Q.
,
2019
, “
Design of TiC Nanoparticles and Their Morphology Manipulating Mechanisms by Stoichiometric Ratios: Experiment and First-Principle Calculation
,”
Mater. Des.
,
181
, p.
107951
. 10.1016/j.matdes.2019.107951
28.
Mrówka-Nowotnik
,
G.
, and
Sieniawski
,
J.
,
2013
, “
Analysis of Intermetallic Phases in 2024 Aluminium Alloy
,”
Solid State Phenom.
,
197
, pp.
238
243
. 10.4028/www.scientific.net/SSP.197.238
29.
Zhang
,
Z.
,
Watanabe
,
Y.
,
Kim
,
I.
, and
Liu
,
X.
,
2005
, “
Microstructure and Refining Performance of an Al−5Ti−0.25C Refiner Before and After Equal-Channel Angular Pressing
,”
Metall. Mater. Trans. A
,
36
(
13
), pp.
837
844
. 10.1007/s11661-005-1013-3
30.
Banerji
,
A.
, and
Reif
,
W.
,
1985
, “
Grain Refinement of Aluminum by TiC
,”
Metall. Trans. A
,
16
(
11
), pp.
2065
2068
. 10.1007/BF02662410
31.
De Cicco
,
M. P.
,
Turng
,
L.-S.
,
Li
,
X.
, and
Perepezko
,
J. H.
,
2011
, “
Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants
,”
Metall. Mater. Trans. A
,
42
(
8
), pp.
2323
2330
. 10.1007/s11661-011-0607-1
32.
Guo
,
E.
,
Shuai
,
S.
,
Kazantsev
,
D.
,
Karagadde
,
S.
,
Phillion
,
A. B.
,
Jing
,
T.
,
Li
,
W.
, and
Lee
,
P. D.
,
2018
, “
The Influence of Nanoparticles on Dendritic Grain Growth in Mg Alloys
,”
Acta Mater.
,
152
, pp.
127
137
. 10.1016/j.actamat.2018.04.023
33.
Xu
,
J.
,
Chen
,
L.
,
Choi
,
H.
, and
Li
,
X.
,
2012
, “
Theoretical Study and Pathways for Nanoparticle Capture During Solidification of Metal Melt
,”
J. Phys. Condens. Matter
,
24
(
25
), p.
255304
. 10.1088/0953-8984/24/25/255304
34.
Xu
,
J.
,
2015
,
Achieving Uniform Nanoparticle Dispersion in Metal Matrix Nanocomposites
,
University of California at Los Angeles
,
Los Angeles, CA
.
35.
Chen
,
L.
,
Xu
,
J.
,
Choi
,
H.
,
Konishi
,
H.
,
Jin
,
S.
, and
Li
,
X.
,
2014
, “
Rapid Control of Phase Growth by Nanoparticles
,”
Nat. Commun.
,
5
(
1
), p.
3879
. 10.1038/ncomms4879
36.
Chen
,
L.
,
Xu
,
J.
, and
Li
,
X.
,
2015
, “
Controlling Phase Growth During Solidification by Nanoparticles
,”
Mater. Res. Lett.
,
3
(
1
), pp.
43
49
. 10.1080/21663831.2014.956264
37.
Cao
,
C.
,
Ling
,
H.
,
Murali
,
N.
, and
Li
,
X.
,
2019
, “
In-Situ Molten Salt Reaction and Incorporation of Small (10 Nm) TiC Nanoparticles Into Al
,”
Materialia
,
7
, p.
100425
. 10.1016/j.mtla.2019.100425
38.
Murali
,
N.
,
Sokoluk
,
M.
, and
Li
,
X.
,
2021
, “
Study on Aluminum Alloy Joints Welded With Nano-Treated Al-Mg-Mn Filler Wire
,”
Mater. Lett.
,
283
, p.
128739
. 10.1016/j.matlet.2020.128739
You do not currently have access to this content.