Abstract

Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows as feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries.

References

1.
Ning
,
H.
,
Lu
,
N.
,
Hassen
,
A. A.
,
Chawla
,
K.
,
Selim
,
M.
, and
Pillay
,
S.
,
2020
, “
A Review of Long Fibre Thermoplastic (LFT) Composites
,”
Int. Mater. Rev.
,
65
(
3
), pp.
164
188
. 10.1080/09506608.2019.1585004
2.
Hartness
,
T.
,
Husman
,
G.
,
Koenig
,
J.
, and
Dyksterhouse
,
J.
,
2001
, “
The Characterization of Low Cost Fiber Reinforced Thermoplastic Composites Produced by the DRIFTTM Process
,”
Compos. Part A: Appl. Sci. Manuf.
,
32
(
8
), pp.
1155
1160
. 10.1016/S1359-835X(01)00061-6
3.
Tanabe
,
D.
,
Kubohori
,
F.
,
Imamura
,
S.
,
Jiang
,
H.
,
Nishiyabu
,
K.
, and
Kurashiki
,
T.
,
2016
, “
Continuous Tape Layup Molding of CFRTP Using Near-Infrared Heating and High Frequency Induction Roller Heating
,”
17th European Conference on Composite Materials, ECCM 2016
,
Munich, Germany
,
June 26–30
, p.
126913
.
4.
Rakhshbahar
,
M.
, and
Sinapius
,
M.
,
2018
, “
A Novel Approach: Combination of Automated Fiber Placement (AFP) and Additive Layer Manufacturing (ALM)
,”
J. Compos. Sci.
,
2
(
3
), p.
42
. 10.3390/jcs2030042
5.
Composites World
,
2015
, “
Fabrication Methods
.” https://www.compositesworld.com/articles/fabrication-methods-2015, Accessed October 20, 2019.
6.
Crosky
,
A.
,
Grant
,
C.
,
Kelly
,
D.
,
Legrand
,
X.
, and
Pearce
,
G.
,
2015
, “Fibre Placement Processes for Composites Manufacture,”
Advances in Composites Manufacturing and Process Design
,
P.
Boisse
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
79
92
.
7.
Marian
,
J.
,
Venturini
,
G.
,
Hansen
,
B. L.
,
Knap
,
J.
,
Ortiz
,
M.
, and
Campbell
,
G. H.
,
2010
, “
Finite-Temperature Extension of the Quasicontinuum Method Using Langevin Dynamics: Entropy Losses and Analysis of Errors
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
15003
. 10.1088/0965-0393/18/1/015003
8.
Degenhardt
,
R.
,
2017
, “Stability of Composite Shell–Type Structures,”
Stability and Vibrations of Thin Walled Composite Structures
,
H.
Abramovich
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
253
428
.
9.
CompositesWorld
,
2017
, “
Reconfigurable Tooling: Revolutionizing Composites Manufacturing
.” https://www.compositesworld.com/articles/reconfigurable-tooling-revolutionizing-composites-manufacturing, Accessed October 20, 2019.
10.
Hoa
,
S. V.
,
2017
, “
Factors Affecting the Properties of Composites Made by 4D Printing (Moldless Composites Manufacturing)
,”
Adv. Manuf. Polym. Compos. Sci.
,
3
(
3
), pp.
101
109
. 10.1080/20550340.2017.1355519
11.
Rihaczek
,
G.
,
Klammer
,
M.
,
Basnak
,
O.
,
Petrš
,
J.
,
Grisin
,
B.
,
Dahy
,
H.
,
Carosella
,
S.
, and
Middendorf
,
P.
,
2020
, “
Curved Foldable Tailored Fiber Reinforcements for Moldless Customized Bio-Composite Structures. Proof of Concept: Biomimetic NFRP Stools
,”
Polymers (Basel)
,
12
(
9
), p.
2000
. 10.3390/polym12092000
12.
Zhai
,
Y.
,
Lados
,
D. A.
, and
Lagoy
,
J. L.
,
2014
, “
Additive Manufacturing: Making Imagination the Major Limitation
,”
JOM
,
66
(
5
), pp.
808
816
. 10.1007/s11837-014-0886-2
13.
Moreno Nieto
,
D.
,
Casal López
,
V.
, and
Molina
,
S. I.
,
2018
, “
Large-Format Polymeric Pellet-Based Additive Manufacturing for the Naval Industry
,”
Addit. Manuf.
,
23
, pp.
79
85
. 10.1016/j.addma.2018.07.012
14.
Yang
,
S. W.
, and
Chin
,
W. K.
,
1999
, “
Mechanical Properties of Aligned Long Glass Fiber Reinforced Polypropylene. II: Tensile Creep Behavior
,”
Polym. Compos.
,
20
(
2
), pp.
207
215
. 10.1002/pc.10348
15.
Chawla
,
K. K.
,
1989
, “
Composite Materials Science and Engineering
,”
Composites
,
20
(
3
), p.
286
. 10.1016/0010-4361(89)90346-7
16.
Liu
,
T.
,
Tian
,
X.
,
Zhang
,
Y.
,
Cao
,
Y.
, and
Li
,
D.
,
2020
, “
High-Pressure Interfacial Impregnation by Micro-Screw In-Situ Extrusion for 3D Printed Continuous Carbon Fiber Reinforced Nylon Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
130
, p.
105770
. 10.1016/j.compositesa.2020.105770
17.
Luo
,
M.
,
Tian
,
X.
,
Shang
,
J.
,
Zhu
,
W.
,
Li
,
D.
, and
Qin
,
Y.
,
2019
, “
Impregnation and Interlayer Bonding Behaviours of 3D-Printed Continuous Carbon-Fiber-Reinforced Poly-Ether-Ether-Ketone Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
121
, pp.
130
138
. 10.1016/j.compositesa.2019.03.020
18.
Toll
,
S.
, and
Aronsson
,
C. G.
,
1992
, “
Notched Strength of Long- and Short-Fibre Reinforced Polyamide
,”
Compos. Sci. Technol.
,
45
(
1
), pp.
43
54
. 10.1016/0266-3538(92)90121-I
19.
Vu-Khanh
,
T.
, and
Denault
,
J.
,
1992
, “
Toughness of Reinforced Ductile Thermoplastics
,”
J. Compos. Mater.
,
26
(
15
), pp.
2262
2277
. 10.1177/002199839202601505
20.
Yasuda
,
H.
,
Chiba
,
Y.
, and
Ishikawa
,
M.
,
2011
, “
Effect of the Glass Fiber Length on the Mechanical Properties of Long Glass Fiber Reinforced Polyphenylene Sulfide
,”
J. Polym. Eng.
,
31
(
5
), pp.
427
434
. 10.1515/polyeng.2011.088
21.
Ning
,
F.
,
Cong
,
W.
,
Hu
,
Y.
, and
Wang
,
H.
,
2017
, “
Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties
,”
J. Compos. Mater.
,
51
(
4
), pp.
451
462
. 10.1177/0021998316646169
22.
Dudek
,
P.
,
2013
, “
FDM 3D Printing Technology in Manufacturing Composite Elements
,”
Arch. Metall. Mater.
,
58
(
4
), pp.
1415
1418
. 10.2478/amm-2013-0186
23.
Farahani
,
R. D.
,
Dalir
,
H.
,
Le Borgne
,
V.
,
Gautier
,
L. A.
,
El Khakani
,
M. A.
,
Lévesque
,
M.
, and
Therriault
,
D.
,
2012
, “
Direct-Write Fabrication of Freestanding Nanocomposite Strain Sensors
,”
Nanotechnology
,
23
(
8
), p.
085502
. 10.1088/0957-4484/23/8/085502
24.
Ferreira
,
R. T. L.
,
Amatte
,
I. C.
,
Dutra
,
T. A.
, and
Bürger
,
D.
,
2017
, “
Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced With Short Carbon Fibers
,”
Compos. Part B: Eng.
,
124
, pp.
88
100
. 10.1016/j.compositesb.2017.05.013
25.
Papon
,
E. A.
, and
Haque
,
A.
,
2019
, “
Fracture Toughness of Additively Manufactured Carbon Fiber Reinforced Composites
,”
Addit. Manuf.
,
26
, pp.
41
52
. 10.1016/j.addma.2018.12.010
26.
Justo
,
J.
,
Távara
,
L.
,
García-Guzmán
,
L.
, and
París
,
F.
,
2018
, “
Characterization of 3D Printed Long Fibre Reinforced Composites
,”
Compos. Struct.
,
185
, pp.
537
548
. 10.1016/j.compstruct.2017.11.052
27.
Li
,
N.
,
Li
,
Y.
, and
Liu
,
S.
,
2016
, “
Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing
,”
J. Mater. Process. Technol.
,
238
, pp.
218
225
. 10.1016/j.jmatprotec.2016.07.025
28.
Yao
,
X.
,
Luan
,
C.
,
Zhang
,
D.
,
Lan
,
L.
, and
Fu
,
J.
,
2017
, “
Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring
,”
Mater. Des.
,
114
, pp.
424
432
. 10.1016/j.matdes.2016.10.078
29.
Tian
,
X.
,
Liu
,
T.
,
Yang
,
C.
,
Wang
,
Q.
, and
Li
,
D.
,
2016
, “
Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
88
, pp.
198
205
. 10.1016/j.compositesa.2016.05.032
30.
Matsuzaki
,
R.
,
Ueda
,
M.
,
Namiki
,
M.
,
Jeong
,
T. K.
,
Asahara
,
H.
,
Horiguchi
,
K.
,
Nakamura
,
T.
,
Todoroki
,
A.
, and
Hirano
,
Y.
,
2016
, “
Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation
,”
Sci. Rep.
,
6
(
1
), p.
23058
. 10.1038/srep23058
31.
Dutra
,
T. A.
,
Ferreira
,
R. T. L.
,
Resende
,
H. B.
, and
Guimarães
,
A.
,
2019
, “
Mechanical Characterization and Asymptotic Homogenization of 3D-Printed Continuous Carbon Fiber-Reinforced Thermoplastic
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
41
(
3
), p.
133
. 10.1007/s40430-019-1630-1
32.
Zhang
,
H.
,
Liu
,
D.
,
Huang
,
T.
,
Hu
,
Q.
, and
Lammer
,
H.
,
2020
, “
Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine
,”
Materials (Basel)
,
13
(
7
), p.
1678
. 10.3390/ma13071678
33.
Ye
,
W.
,
Lin
,
G.
,
Wu
,
W.
,
Geng
,
P.
,
Hu
,
X.
,
Gao
,
Z.
, and
Zhao
,
J.
,
2019
, “
Separated 3D Printing of Continuous Carbon Fiber Reinforced Thermoplastic Polyimide
,”
Compos. Part A: Appl. Sci. Manuf.
,
121
, pp.
457
464
. 10.1016/j.compositesa.2019.04.002
34.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
181
189
. 10.1108/RPJ-12-2015-0183
35.
Brenken
,
B.
,
Barocio
,
E.
,
Favaloro
,
A.
,
Kunc
,
V.
, and
Pipes
,
R. B.
,
2018
, “
Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review
,”
Addit. Manuf.
,
21
, pp.
1
16
. 10.1016/j.addma.2018.01.002
36.
Zhang
,
J.
,
Zhou
,
Z.
,
Zhang
,
F.
,
Tan
,
Y.
,
Tu
,
Y.
, and
Yang
,
B.
,
2020
, “
Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics With Pressure
,”
Materials (Basel)
,
13
(
2
), p.
471
. 10.3390/ma13020471
37.
Li
,
N.
,
Link
,
G.
, and
Jelonnek
,
J.
,
2020
, “
3D Microwave Printing Temperature Control of Continuous Carbon Fiber Reinforced Composites
,”
Compos. Sci. Technol.
,
187
, p.
107939
. 10.1016/j.compscitech.2019.107939
38.
Liu
,
T.
,
Tian
,
X.
,
Zhang
,
M.
,
Abliz
,
D.
,
Li
,
D.
, and
Ziegmann
,
G.
,
2018
, “
Interfacial Performance and Fracture Patterns of 3D Printed Continuous Carbon Fiber With Sizing Reinforced PA6 Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
114
, pp.
368
376
. 10.1016/j.compositesa.2018.09.001
39.
Balaji Thattaiparthasarathy
,
K.
,
Pillay
,
S.
,
Ning
,
H.
, and
Vaidya
,
U. K.
,
2008
, “
Process Simulation, Design and Manufacturing of a Long Fiber Thermoplastic Composite for Mass Transit Application
,”
Compos. Part A: Appl. Sci. Manuf.
,
39
(
9
), pp.
1512
1521
. 10.1016/j.compositesa.2008.05.017
40.
Yan
,
X.
, and
Cao
,
S.
,
2018
, “
Structure and Interfacial Shear Strength of Polypropylene-Glass Fiber/Carbon Fiber Hybrid Composites Fabricated by Direct Fiber Feeding Injection Molding
,”
Compos. Struct.
,
185
, pp.
362
372
. 10.1016/j.compstruct.2017.11.037
41.
Van den Oever
,
M. J. A.
,
Beck
,
B.
, and
Müssig
,
J.
,
2010
, “
Agrofibre Reinforced Poly (Lactic Acid) Composites: Effect of Moisture on Degradation and Mechanical Properties
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
11
), pp.
1628
1635
. 10.1016/j.compositesa.2010.07.011
42.
Park
,
H.
,
Kim
,
B.
,
Gim
,
J.
,
Han
,
E.
, and
Rhee
,
B.
,
2017
, “
A Study on the Entrapped Air Bubble in the Plasticizing Process
,”
Annual Technical Conference—ANTEC, Conference Proceedings
,
Anaheim, CA
,
May 8–10
, pp.
1635
1639
.
43.
Pérez-Pacheco
,
E.
,
Cauich-Cupul
,
J. I.
,
Valadez-González
,
A.
, and
Herrera-Franco
,
P. J.
,
2013
, “
Effect of Moisture Absorption on the Mechanical Behavior of Carbon Fiber/Epoxy Matrix Composites
,”
J. Mater. Sci.
,
48
(
5
), pp.
1873
1882
. 10.1007/s10853-012-6947-4
44.
Zhong
,
W.
,
Li
,
F.
,
Zhang
,
Z.
,
Song
,
L.
, and
Li
,
Z.
,
2001
, “
Short Fiber Reinforced Composites for Fused Deposition Modeling
,”
Mater. Sci. Eng. A
,
301
(
2
), pp.
125
130
. 10.1016/S0921-5093(00)01810-4
45.
Tekinalp
,
H. L.
,
Kunc
,
V.
,
Velez-Garcia
,
G. M.
,
Duty
,
C. E.
,
Love
,
L. J.
,
Naskar
,
A. K.
,
Blue
,
C. A.
, and
Ozcan
,
S.
,
2014
, “
Highly Oriented Carbon Fiber-Polymer Composites via Additive Manufacturing
,”
Compos. Sci. Technol.
,
105
, pp.
144
150
. 10.1016/j.compscitech.2014.10.009
46.
Moses
,
K. B.
,
Advani
,
S. G.
, and
Reinhardt
,
A.
,
2001
, “
Investigation of Fiber Motion Near Solid Boundaries in Simple Shear Flow
,”
Rheol. Acta
,
40
(
3
), pp.
296
306
. 10.1007/s003970000135
47.
Joung
,
C. G.
,
Phan-Thien
,
N.
, and
Fan
,
X. J.
,
2001
, “
Direct Simulations of Flexible Fibers
,”
J. Non-Newton. Fluid Mech.
,
99
(
1
), pp.
1
36
. 10.1016/S0377-0257(01)00113-6
48.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. A, Math. Phys. Eng. Sci.
,
102
(
715
), pp.
161
179
.
49.
Tian
,
X.
,
Liu
,
T.
,
Wang
,
Q.
,
Dilmurat
,
A.
,
Li
,
D.
, and
Ziegmann
,
G.
,
2017
, “
Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites
,”
J. Clean. Prod.
,
142
, pp.
1609
1618
. 10.1016/j.jclepro.2016.11.139
50.
Mehndiratta
,
A.
,
Bandyopadhyaya
,
S.
,
Kumar
,
V.
, and
Kumar
,
D.
,
2018
, “
Experimental Investigation of Span Length for Flexural Test of Fiber Reinforced Polymer Composite Laminates
,”
J. Mater. Res. Technol.
,
7
(
1
), pp.
89
95
. 10.1016/j.jmrt.2017.06.010
51.
Kabir
,
S. M. F.
,
Mathur
,
K.
, and
Seyam
,
A. F. M.
,
2020
, “
A Critical Review on 3D Printed Continuous Fiber-Reinforced Composites: History, Mechanism, Materials and Properties
,”
Compos. Struct.
,
232
, p.
111476
. 10.1016/j.compstruct.2019.111476
52.
Hexcel
,
2019
, “
HexTow® Continuous Carbon Fiber
.” https://www.hexcel.com/Products/Carbon-Fiber/HexTow-Continuous-Carbon-Fiber, Accessed October 20, 2019.
53.
Filabot
,
2019
, “
Pulverized Pla—4043D
.” https://www.filabot.com/products/pulverized-pla, Accessed October 20, 2019.
54.
McNally
,
D.
,
1977
, “
Short Fiber Orientation and Its Effects on the Properties of Thermoplastic Composite Materials
,”
Polym. Plast. Technol. Eng.
,
8
(
2
), pp.
101
154
. 10.1080/03602557708545033
55.
Qiu
,
S.
,
Fuentes
,
C. A.
,
Zhang
,
D.
,
Van Vuure
,
A. W.
, and
Seveno
,
D.
,
2016
, “
Wettability of a Single Carbon Fiber
,”
Langmuir
,
32
(
38
), pp.
9697
9705
. 10.1021/acs.langmuir.6b02072
56.
Wang
,
Q.
,
Jones
,
J.
,
Lu
,
N.
,
Johnson
,
R.
,
Ning
,
H.
, and
Pillay
,
S.
,
2018
, “
Development and Characterization of High-Performance Kenaf Fiber–HDPE Composites
,”
J. Reinf. Plast. Compos.
,
37
(
3
), pp.
191
200
. 10.1177/0731684417739127
57.
Dong
,
X.
, and
Shin
,
Y. C.
,
2017
, “
Multi-Scale Modeling of Thermal Conductivity of SiC-Reinforced Aluminum Metal Matrix Composite
,”
J. Compos. Mater.
,
51
(
28
), pp.
3941
3953
. 10.1177/0021998317695873
58.
Dong
,
X.
, and
Shin
,
Y. C.
,
2018
, “
Multi-Scale Genome Modeling for Predicting Fracture Strength of Silicon Carbide Ceramics
,”
Comput. Mater. Sci.
,
141
, pp.
10
18
. 10.1016/j.commatsci.2017.09.012
59.
Dong
,
X.
, and
Shin
,
Y. C.
,
2018
, “
Predictions of Thermal Conductivity and Degradation of Irradiated SiC/SiC Composites by Materials-Genome-Based Multiscale Modeling
,”
J. Nucl. Mater.
,
512
, pp.
268
275
. 10.1016/j.jnucmat.2018.10.021
60.
Lužanin
,
O.
,
Movrin
,
D.
, and
Plan
,
M.
,
2013
, “
Experimental Investigation of Extrusion Speed and Temperature Effects on Arithmetic Mean Surface Roughness in FDM-Built Specimens
,”
J. Technol. Plast.
,
38
(
2
), pp.
179
190
.
61.
Gajdoš
,
I.
,
Spišák
,
E.
,
Kaščák
,
Ľ
, and
Krasinskyi
,
V.
,
2015
, “
Surface Finish Techniques for FDM Parts
,”
Materials Science Forum
, vol.
818
, pp.
45
48
. 10.4028/www.scientific.net/msf.818.45
62.
Singh
,
R.
,
Singh
,
S.
,
Singh
,
I. P.
,
Fabbrocino
,
F.
, and
Fraternali
,
F.
,
2017
, “
Investigation for Surface Finish Improvement of FDM Parts by Vapor Smoothing Process
,”
Compos. Part B: Eng.
,
111
, pp.
228
234
. 10.1016/j.compositesb.2016.11.062
You do not currently have access to this content.