Abstract

Additive manufacturing (AM) allows for the inclusion of complicated geometric features that are impractical or impossible to manufacture by other means. Among such features is the collection of intricate and periodic strut-like geometries known as lattice structures. Lattice structures are desirable for their ability to provide stiffness through a large number of supporting members while employing void space within the geometry as a means to reduce part material volume. Strut thicknesses of every lattice in a part are generally not well optimized in order to maximize part stiffness, and often every lattice unit cell is identical throughout the part. This work presents a lattice density optimization methodology that is able to find the optimal graded lattice density distribution for maximizing the part stiffness and also improving the additive manufacturability of the part. The material property interpolation scheme used in SIMP optimization is replaced by a representative volume element (RVE)-based interpolation scheme that more accurately captures the material properties of the prescribed lattice structure at an arbitrary density. A filter has been developed that allows for trimming of unnecessary lattices while simultaneously ensuring that the geometry remains self-supporting during the AM build process. This filter is incorporated seamlessly within the topology optimization routine. This increases the optimality of the resulting design when compared with full-domain lattice filling and increases the viability of the design from a manufacturing standpoint when compared with unconstrained lattice trimming.

References

1.
Rosen
,
D.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
. 10.1080/16864360.2007.10738493
2.
Gibson
,
L.
, and
Ashby
,
M.
,
2010
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
3.
Hao
,
L.
,
Raymont
,
D.
,
Yan
,
C.
,
Hussein
,
A.
, and
Young
,
P.
, “
Design and Additive Manufacturing of Cellular Lattice Structures
,”
Proceedings of the International Conference on Advanced Research and Rapid Prototyping
,
Leiria, Portugal
,
Sept. 28–Oct. 1, 2011
, pp.
249
254
.
4.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
. 10.1016/j.jmatprotec.2013.01.020
5.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
. 10.1016/j.ijmachtools.2012.06.002
6.
Bendsoe
,
M. P.
,
1995
,
Optimization of Structural Topology, Shape, and Material
,
Springer Science & Business Media
,
Berlin
.
7.
Bendsoe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
8.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10, 2011
, pp.
348
362
.
9.
Alzahrani
,
M.
,
Choi
,
S. K.
, and
Rosen
,
D.
,
2015
, “
Design of Truss-Like Cellular Structures Using Relative Density Mapping Method
,”
Mater. Des.
,
85
, pp.
349
360
. 10.1016/j.matdes.2015.06.180
10.
Eschenaur
,
H.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
. 10.1115/1.1388075
11.
Wang
,
Y.
,
2003
, “
A Study on Microstructures of Homogenization for Topology Optimization
,”
MS thesis
,
Victoria University
.
12.
Guedes
,
J. M.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
. 10.1016/0045-7825(90)90148-F
13.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media with Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
. 10.1016/S0045-7949(98)00131-X
14.
Wang
,
Y.
,
Xu
,
H.
, and
Pasini
,
D.
,
2017
, “
Multiscale Isogeometric Topology Optimization for Lattice Materials
,”
Comput. Methods Appl. Mech. Eng.
,
316
, pp.
568
585
. 10.1016/j.cma.2016.08.015
15.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
. 10.1115/1.4028724
16.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components with Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
334
359
. 10.1016/j.cma.2018.10.010
17.
Zhang
,
P.
,
Liu
,
J.
, and
To
,
A.
,
2017
, “
Role of Anisotropic Properties on Topology Optimization of Additive Manufactured Load Bearing Structures
,”
Scr. Mater.
,
135
, pp.
148
152
. 10.1016/j.scriptamat.2016.10.021
18.
Groen
,
J.
, and
Sigmund
,
O.
,
2017
, “
Homogenization-based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
. 10.1002/nme.5575
19.
Salonitis
,
K.
,
Chantzis
,
D.
, and
Kappatos
,
V.
,
2017
, “
A Hybrid Finite Element Analysis and Evolutionary Computation Method for the Design of Lightweight Lattice Components with Optimized Strut Diameter
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9-12
), pp.
2689
2701
. 10.1007/s00170-016-9528-x
20.
Sundararajan
,
V.
,
2010
, “
Topology Optimization for Additive Manufacturing of Customized Meso-Structures Using Homogenization and Parametric Smoothing Functions
,”
MS thesis
,
University of Texas
.
21.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
,
Dong
,
G.
,
Tang
,
Y.
, and
Xie
,
Y. M.
,
2018
, “
Optimal Design and Modeling of Gyroid-Based Functionally Graded Cellular Structures for Additive Manufacturing
,”
Comput.-Aided Des.
,
104
, pp.
87
99
. 10.1016/j.cad.2018.06.003
22.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscip. Optim.
,
43
(
1
), pp.
1
16
. 10.1007/s00158-010-0594-7
23.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
. 10.1007/BF01214002
24.
Catmull
,
E.
, and
Rom
,
R.
,
1974
, “
A Class of Local Interpolating Splines
,”
Comput. Aided Geom. Des.
, pp.
317
326
. 10.1016/B978-0-12-079050-0.50020-5
25.
Guyan
,
R.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
. 10.2514/3.2874
26.
Gu
,
Q.
,
Barbato
,
M.
, and
Conte
,
J.
,
2009
, “
Handling of Constraints in Finite-Element Response Sensitivity Analysis
,”
J. Eng. Mech.
,
135
(
12
), pp.
1427
1438
. 10.1061/(ASCE)EM.1943-7889.0000053
27.
Cook
,
R.
,
Malkus
,
D.
,
Plesha
,
M.
, and
Witt
,
R.
,
2002
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
,
New York
.
28.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
. 10.1007/s00158-016-1513-3
29.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
871
883
. 10.1007/s00158-016-1522-2
30.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
A
), pp.
60
70
.
31.
Gaynor
,
A.
, and
Guest
,
J.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
. 10.1007/s00158-016-1551-x
32.
Valdez
,
S. I.
,
Botello
,
S.
,
Ochoa
,
M. A.
,
Marroquin
,
J. L.
, and
Cardoso
,
V.
,
2017
, “
Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems
,”
Archives Computational Methods Eng.
,
24
(
4
), pp.
803
839
. 10.1007/s11831-016-9190-3
33.
Cheng
,
L.
,
Liu
,
J.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Coupling Lattice Structure Topology Optimization with Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
408
439
. 10.1016/j.cma.2017.12.024
34.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Mater. Des.
,
183
, p.
108164
. 10.1016/j.matdes.2019.108164
35.
Wu
,
J.
,
Wang
,
W.
, and
Gao
,
X.
,
2019
, “
Design and Optimization of Conforming Lattice Structures
,”
IEEE Transactions on Visualization and Computer Graphics.
,
27
(
1
), pp.
43
56
. 10.1109/TVCG.2019.2938946
36.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
, and
Xie
,
Y. M.
,
2020
, “
Anisotropic Design and Optimization of Conformal Gradient Lattice Structures
,”
Comput. Des.
,
119
, p.
102787
.
37.
Venugopal
,
V.
,
McConaha
,
M.
, and
Anand
,
S.
, “
Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14, 2019
.
38.
McConaha
,
M.
,
Venugopal
,
V.
, and
Anand
,
S.
,
2020
, “
Integration of Machine Tool Accessibility of Support Structures with Topology Optimization for Additive Manufacturing
,”
Procedia Manuf.
,
48
, pp.
634
642
. 10.1016/j.promfg.2020.05.092
You do not currently have access to this content.