Abstract

Tool breakage is a significant issue in micro milling owing to the less stiffness of the micro tool. To cope up with such limitation, precise predictions of dynamic stability, and cutting force have the utmost importance to monitor and optimize the process. In this article, dynamic stability and cutting force are predicted precisely for micro milling of Ti6Al4V by obtaining force coefficients from a novel 3D intermittent oblique cutting finite element method (FEM) simulation considering the influence of tool run out. First, the stability model is modified by incorporating the appropriate values of limiting angles obtained analytically accounting the trajectories of the flutes due to tool run out. This stability model is utilized to select chatter-free parametric combinations for micro milling tests. Next, an improved cutting force model is developed by incorporating the force coefficients obtained from oblique cutting simulation in the mechanistic model and differentiating the whole machining region into three distinct region considering size effect. The force model also considers the effect of increased edge radius of the worn tool, run out, elastic recovery, ploughing, minimum undeformed chip thickness (MUCT), and limiting angles, cumulatively. The proposed dynamic stability and cutting force models based on the oblique cutting simulation show their adequacy by predicting the stability limit and cutting force more precisely, respectively, as compared to those obtained by orthogonal cutting simulation. Besides, the proposed force model for the worn tool is found to be viable as it is closer to the experimental forces, whereas force model without the incorporation of tool wear underestimated the experimental forces.

References

1.
Rao
,
S.
, and
Shunmugam
,
M. S.
,
2012
, “
Analytical Modeling of Micro End-Milling Forces With Edge Radius and Material Strengthening Effects
,”
Mach. Sci. Technol.
,
16
(
2
), pp.
205
227
. 10.1080/10910344.2012.673966
2.
Sahoo
,
P.
, and
Patra
,
K.
,
2019
, “
Mechanistic Modeling of Cutting Forces in Micro-End-Milling Considering Tool Run out, Minimum Chip Thickness and Tooth Overlapping Effects
,”
Mach. Sci. Technol.
,
23
(
3
), pp.
407
430
. 10.1080/10910344.2018.1486423
3.
Sahoo
,
P.
,
Pratap
,
T.
,
Patra
,
K.
, and
Dyakonov
,
A. A.
,
2018
, “
Size Effects in Micro End-Milling of Hardened P-20 Steel
,”
Mater. Today Proc.
,
5
(
11
), pp.
23726
23732
. 10.1016/j.matpr.2018.10.163
4.
Li
,
G.
,
Yi
,
S.
,
Wen
,
C.
, and
Ding
,
S.
,
2018
, “
Wear Mechanism and Modeling of Tribiological Behavior of Polycrystalline Diamond Tools When Cutting Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121011
. 10.1115/1.4041327
5.
Mittal
,
R. K.
,
Kulkarni
,
S. S.
, and
Singh
,
R.
,
2018
, “
Characterization of Lubrication Sensitivity on Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V via a Novel Numerical Scheme
,”
Int. J. Mech. Sci.
,
142–143
, pp.
51
65
. 10.1016/j.ijmecsci.2018.04.038
6.
Aslantas
,
K.
,
Hopa
,
H. E.
,
Percin
,
M.
,
Ucun
,
İ.
, and
Çicek
,
A.
,
2016
, “
Cutting Performance of Nano-Crystalline Diamond (NCD) Coating in Micro-Milling of Ti 6 Al 4V Alloy
,”
Precis. Eng.
,
45
(
4
), pp.
55
66
. 10.1016/j.precisioneng.2016.01.009
7.
Swan
,
S.
,
Bin Abdullah
,
M. S.
,
Kim
,
D.
,
Nguyen
,
D.
, and
Kwon
,
P.
,
2018
, “
Tool Wear of Advanced Coated Tools in Drilling of CFRP
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111018
. 10.1115/1.4040916
8.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
. 10.1115/1.4024038
9.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2019
, “
Stability Modeling With Dynamic Run-out in High Speed Micromilling of Ti6Al4V
,”
Int. J. Mech. Sci.
,
150
(
November 2018
), pp.
677
690
. 10.1016/j.ijmecsci.2018.11.001
10.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Gupta
,
M. K.
,
Song
,
Q.
,
Mia
,
M.
, and
Pimenov
,
D. Y.
,
2020
, “
Influences of TiAlN Coating and Limiting Angles of Flutes on Prediction of Cutting Forces and Dynamic Stability in Micro Milling of Die Steel (P-20)
,”
J. Mater. Process. Technol.
,
278
(
4
), p.
116500
. 10.1016/j.jmatprotec.2019.116500
11.
Lu
,
X.
,
Jia
,
Z.
,
Liu
,
S.
,
Yang
,
K.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2019
, “
Chatter Stability of Micro-milling by Considering the Centrifugal Force and Gyroscopic Effect of the Spindle
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111013
10
. 10.1115/1.4044520
12.
Mittal
,
R. K.
,
Singh
,
R. K.
,
Kulkarni
,
S. S.
,
Kumar
,
P.
, and
Barshilia
,
H. C.
,
2018
, “
Characterization of Anti-abrasion and Anti-friction Coatings on Micromachining Response in High Speed Micromilling of Ti-6Al-4V
,”
J. Manuf. Process.
,
34
(
8
), pp.
303
312
. 10.1016/j.jmapro.2018.06.021
13.
Mittal
,
R.
,
Maheshwari
,
C.
,
Kulkarni
,
S. S.
, and
Singh
,
R.
,
2019
, “
Effect of Progressive Tool Wear on the Evolution of the Dynamic Stability Limits in High-Speed Micromilling of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111016
. 10.1115/1.4044713
14.
Park
,
S. S.
, and
Malekian
,
M.
,
2009
, “
Mechanistic Modeling and Accurate Measurement of Micro End Milling Forces
,”
CIRP Ann.—Manuf. Technol.
,
58
(
1
), pp.
49
52
. 10.1016/j.cirp.2009.03.060
15.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
. 10.1016/j.ijmachtools.2009.02.006
16.
Rodríguez
,
P.
, and
Labarga
,
J. E.
,
2014
, “
Tool Deflection Model for Micromilling Processes
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
199
207
. 10.1007/s00170-014-5890-8
17.
Rodríguez
,
P.
, and
Labarga
,
J. E.
,
2013
, “
A New Model for the Prediction of Cutting Forces in Micro-End-Milling Operations
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
261
268
. 10.1016/j.jmatprotec.2012.09.009
18.
Zhou
,
Y.
,
Tian
,
Y.
,
Jing
,
X.
, and
Ehmann
,
K. F.
,
2017
, “
A Novel Instantaneous Uncut Chip Thickness Model for Mechanistic Cutting Force Model in Micro-End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2305
2319
. 10.1007/s00170-017-0638-x
19.
Sahoo
,
P.
,
Pratap
,
T.
, and
Patra
,
K.
,
2019
, “
A Hybrid Modelling Approach Towards Prediction of Cutting Forces in Micro End Milling of Ti-6Al-4V Titanium Alloy
,”
Int. J. Mech. Sci.
,
150
(
1
), pp.
495
509
. 10.1016/j.ijmecsci.2018.10.032
20.
Deng
,
B.
,
Zhou
,
L.
,
Peng
,
F.
,
Yan
,
R.
,
Yang
,
M.
, and
Liu
,
M.
,
2018
, “
Analytical Model of Cutting Force in Micromilling of Particle-Reinforced Metal Matrix Composites Considering Interface Failure
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081008
. https://doi.org/10.1115/1.4040263
21.
Jing
,
X.
,
Li
,
H.
,
Wang
,
J.
, and
Tian
,
Y.
,
2014
, “
Modelling the Cutting Forces in Micro-End-Milling Using a Hybrid Approach
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1647
1656
. 10.1007/s00170-014-5953-x
22.
Li
,
H.
, and
Wu
,
B.
,
2016
, “
Development of a Hybrid Cutting Force Model for Micromilling of Brass
,”
Int. J. Mech. Sci.
,
115–116
(
17
), pp.
586
595
. 10.1016/j.ijmecsci.2016.08.002
23.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.—Manuf. Technol.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
24.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micro Milling of Ti-6Al-4V via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
(
9
), pp.
56
66
. 10.1016/j.ijmachtools.2015.06.002
25.
Caliskan
,
H.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2018
, “
On-Line Energy-Based Milling Chatter Detection
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081009
. 10.1115/1.4040263
26.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
. 10.1115/1.4041325
27.
Bao
,
W. Y.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations. Part II : Tool Run-Out
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2175
2192
. 10.1016/S0890-6955(00)00055-9
28.
Abdelmoneim
,
M. E.
, and
Scrutton
,
R. F.
,
1974
, “
Tool Edge Roundness and Stable Build-Up Formation in Finish Machining
,”
ASME J. Manuf. Sci. Eng.
,
96
(
4
), pp.
1258
1267
. 10.1115/1.3438504
29.
Jun
,
M. B. G.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), p.
901
. 10.1115/1.2335854
30.
Jun
,
M. B. G.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
. 10.1115/1.4005429
31.
Yoon
,
H. S.
, and
Ehmann
,
K. F.
,
2016
, “
Dynamics and Stability of Micro-Cutting Operations
,”
Int. J. Mech. Sci.
,
115–116
, pp.
81
92
. 10.1016/j.ijmecsci.2016.06.009
32.
Thepsonthi
,
T.
, and
Ozel
,
T.
,
2013
, “
Experimental and Finite Element Simulation Based Investigations on Micro-Milling Ti-6Al- 4V Titanium Alloy: Effects of CBN Coating on Tool Wear
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
532
542
. 10.1016/j.jmatprotec.2012.11.003
33.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics
,
Springer Science
,
New York
.
34.
Sahoo
,
P.
,
Patra
,
K.
,
Szalay
,
T.
, and
Dyakonov
,
A. A.
,
2020
, “
Determination of Minimum Uncut Chip Thickness and Size Effects in Micro-Milling of P-20 Die Steel Using Surface Quality and Process Signal Parameters
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4675
4691
. 10.1007/s00170-020-04926-6
35.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
. 10.1016/j.precisioneng.2008.11.002
36.
De Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
De Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
(
2
), pp.
39
54
. 10.1016/j.ijmachtools.2014.11.001
You do not currently have access to this content.