Abstract

Reduction of contour error is crucial for multi-axis computer numerical control (CNC) machining to produce products with required geometric and dimensional accuracy. Although various contour error pre-compensation methods have been developed, few studies are dedicated to five-axis machines when compared with three-axis ones. In this paper, a new contour error pre-compensation method that integrates analytical prediction of contour error, optimal path-reshaping model, and decoupling solution algorithm is proposed for five-axis machining. First, by analyzing the dynamic responses of servo drive to the typical step and ramp signals, linear expression of servo tracking error with respect to the sequence of discrete axis positions is yielded for the prediction of contour error ahead of servo loops. Then, using the Taylor-series expansion and the pseudo-inverse matrix of the Jacobian function, a least-square optimization-based path-reshaping model that implies the satisfaction condition of zero contour error is analytically built. Thus, the complicated nonlinear contour error pre-compensation problem is converted into a simple quadratic programming problem. Concerning the effects of tool orientation reshaping on tool-tip contouring accuracy, a simple yet effective synchronous compensation strategy is subsequently proposed, through which both tool tip and tool orientation contour errors are reduced to near-zero without any iteration. To address the neighbor-dependence of the contour error compensation in adjacent cutter locations, a progressive solution algorithm with linear computational complexity is also briefly presented. Both numerical simulations and laboratorial experiments are conducted to validate the effectiveness of the proposed method.

References

1.
Chen
,
Z.
,
Yao
,
B.
, and
Wang
,
Q.
,
2013
, “
Adaptive Robust Precision Motion Control of Linear Motors With Integrated Compensation of Nonlinearities and Bearing Flexible Modes
,”
IEEE Trans. Ind. Inform.
,
9
(
2
), pp.
965
973
. 10.1109/TII.2012.2225439
2.
Qian
,
Y.
,
Ou
,
G.
,
Maghareh
,
A.
, and
Dyke
,
S. J.
,
2014
, “
Parametric Identification of a Servo-Hydraulic Actuator for Real-Time Hybrid Simulation
,”
Mech. Syst. Signal Proc.
,
48
(
1–2
), pp.
260
273
. 10.1016/j.ymssp.2014.03.001
3.
Yang
,
J.
, and
Altintas
,
Y.
,
2015
, “
A Generalized On-Line Estimation and Control of Five-Axis Contouring Errors of CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
9
23
. 10.1016/j.ijmachtools.2014.08.004
4.
Zhang
,
D.
,
Yang
,
J.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2015
, “
A Two-Layered Cross Coupling Control Scheme for a Three-Dimensional Motion Control System
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
12
20
. 10.1016/j.ijmachtools.2015.08.001
5.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part I: Modeling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031006
. 10.1115/1.3123335
6.
Xi
,
X.
,
Chen
,
H.
, and
Zhao
,
W.
,
2017
, “
Simplification of a G-Code Feeding Path in Roughing Multi-Axis Electrical Discharging Machining for Shrouded Blisks With a Contour Error Constraint
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111013
. 10.1115/1.4037569
7.
Li
,
X.
,
Zhao
,
H.
,
Zhao
,
X.
, and
Ding
,
H.
,
2016
, “
Dual Sliding Mode Contouring Control With High Accuracy Contour Error Estimation for Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
74
82
. 10.1016/j.ijmachtools.2016.05.007
8.
Hu
,
Q.
,
Chen
,
Y.
,
Yang
,
J.
, and
Zhang
,
D.
,
2018
, “
An Analytical C3 Continuous Local Corner Smoothing Algorithm for Four-Axis CNC Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051004
. 10.1115/1.4039116
9.
Tajima
,
S.
, and
Sencer
,
B.
,
2017
, “
Global Tool-Path Smoothing for CNC Machine Tools With Uninterrupted Acceleration
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
81
95
. 10.1016/j.ijmachtools.2017.03.002
10.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2019
, “
A Real-Time C3 Continuous Local Corner Smoothing and Interpolation Algorithm for CNC Machine Tools
,”
ASME. J. Manuf. Sci. Eng.
,
141
(
4
), p.
041004
. 10.1115/1.4042606
11.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2020
, “
A Real-Time C3 Continuous Tool Path Smoothing and Interpolation Algorithm for Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041002
. 10.1115/1.4046091
12.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2012
, “
Feedrate Interpolation With Axis Jerk Constraints on 5-Axis NURBS and G1 Tool Path
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
73
82
. 10.1016/j.ijmachtools.2012.02.005
13.
Annonib
,
M.
,
Bardine
,
A.
,
Campanelli
,
S.
,
Foglia
,
P.
, and
Prete
,
C. A.
,
2012
, “
A Real-Time Configurable NURBS Interpolator With Bounded Acceleration, Jerk and Chord Error
,”
Comput.-Aided Des.
,
44
(
6
), pp.
509
521
. 10.1016/j.cad.2012.01.009
14.
Yang
,
J.
,
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
A Feedrate Scheduling Algorithm to Constrain Tool Tip Position and Tool Orientation Errors of Five-Axis CNC Machining Under Cutting Load Disturbances
,”
CIRP J. Manuf. Sci. Technol.
,
23
, pp.
78
90
. 10.1016/j.cirpj.2018.08.005
15.
Altintas
,
Y.
,
Yang
,
J.
, and
MuratKilic
,
Z.
,
2019
, “
Virtual Prediction and Constraint of Contour Errors Induced by Cutting Force Disturbances on Multi-Axis CNC Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
377
380
. 10.1016/j.cirp.2019.04.019
16.
Lin
,
M. T.
,
Tsai
,
M. S.
, and
Yau
,
H. T.
,
2007
, “
Development of a Dynamics-Based NURBS Interpolator With Real-Time Look-Ahead Algorithm
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2246
2262
. 10.1016/j.ijmachtools.2007.06.005
17.
Sun
,
Y.
,
Zhao
,
Y.
,
Bao
,
Y.
, and
Guo
,
D.
,
2015
, “
A Smooth Curve Evolution Approach to the Feedrate Planning on Five-Axis Toolpath With Geometric and Kinematic Constraints
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
86
97
. 10.1016/j.ijmachtools.2015.07.002
18.
Ma
,
J.
,
Jia
,
Z.
,
Qin
,
F.
,
Song
,
D.
,
Jiang
,
W.
, and
Chen
,
S.
,
2019
, “
A Five-Axis Dual NURBS Interpolator With Constant Speed at Feedrate-Sensitive Regions Under Axial Drive Constraints
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061002
. 10.1115/1.4043256
19.
Lavernhe
,
S.
,
Tournier
,
C.
, and
Lartigue
,
C.
,
2008
, “
Optimization of 5-Axis High-Speed Machining Using a Surface Based Approach
,”
Comput.-Aided Des.
,
40
(
10–11
), pp.
1015
1023
. 10.1016/j.cad.2008.08.006
20.
Jun
,
C. S.
,
Cha
,
K.
, and
Lee
,
Y. S.
,
2003
, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
,
35
(
6
), pp.
549
566
. 10.1016/S0010-4485(02)00077-5
21.
Huang
,
T.
,
Zhang
,
X.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
. 10.1115/1.4040872
22.
Sun
,
S.
,
Sun
,
Y.
, and
Lee
,
Y.
,
2019
, “
A Gouge-Free Tool Axis Reorientation Method for Kinematics Compliant Avoidance of Singularity in 5-Axis Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051010
. 10.1115/1.4043266
23.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
J. Dyn. Syst. Meas. Control.
,
109
(
1
), pp.
65
68
. 10.1115/1.3143822
24.
Li
,
M.
,
Zhu
,
Y.
,
Yang
,
K.
,
Hu
,
C.
, and
Mu
,
H.
,
2016
, “
An Integrated Model-Data Based Zero Phase Error Tracking Feedforward Control Strategy With Application to an Ultra-Precision Wafer Stage
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
4139
4149
. 10.1109/TIE.2016.2562606
25.
Altintas
,
Y.
,
Erkorkmaz
,
K.
, and
Zhu
,
W. H.
,
2000
, “
Sliding Mode Controller Design for High Speed Feed Drives
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
265
270
. 10.1016/S0007-8506(07)62943-6
26.
Xi
,
X. C.
,
Zhao
,
W. S.
, and
Poo
,
A. N.
,
2015
, “
Improving CNC Contouring Accuracy by Robust Digital Integral Sliding Mode Control
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
51
61
. 10.1016/j.ijmachtools.2014.08.005
27.
Chen
,
C. L.
,
Jang
,
M. J.
, and
Lin
,
K. C.
,
2004
, “
Modeling and High-Precision Control of a Ball- Screw-Driven Stage
,”
Precis. Eng.
,
28
(
4
), pp.
483
495
. 10.1016/j.precisioneng.2004.03.001
28.
Chiu
,
G. T. C.
, and
Tomizuka
,
M.
,
2001
, “
Contouring Control of Machine Tool Feed Drive Systems: A Task Coordinate Frame Approach
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
130
139
. 10.1109/87.896754
29.
Koren
,
Y.
,
1980
, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
4
), pp.
265
272
. 10.1115/1.3149612
30.
Yang
,
J.
, and
Li
,
Z.
,
2011
, “
A Novel Contour Error Estimation for Position Loop-Based Cross-Coupled Control
,”
IEEE-ASME Trans. Mechatron.
,
16
(
4
), pp.
643
655
. 10.1109/TMECH.2010.2048718
31.
Rahaman
,
M.
,
Seethaler
,
R.
, and
Yellowley
,
I.
,
2015
, “
A New Approach to Contour Error Control in High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
42
50
. 10.1016/j.ijmachtools.2014.09.002
32.
Cheng
,
M. Y.
, and
Lee
,
C. C.
,
2007
, “
Motion Controller Design for Contour-Following Tasks Based on Real-Time Contour Error Estimation
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1686
1695
. 10.1109/TIE.2007.894691
33.
Lam
,
D.
,
Manzie
,
C.
, and
Good
,
M.
,
2013
, “
Model Predictive Contouring Control for Biaxial Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
552
559
. 10.1109/TCST.2012.2186299
34.
Yang
,
S.
,
Ghasemi
,
A. H.
,
Lu
,
X.
, and
Okwudire
,
C. E.
,
2015
, “
Pre-compensation of Servo Contour Errors Using a Model Predictive Control Framework
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
50
60
. 10.1016/j.ijmachtools.2015.08.002
35.
Lo
,
C. C.
, and
Hsiao
,
C. Y.
,
1998
, “
CNC Machine Tool Interpolator With Path Compensation for Repeated Contour Machining
,”
Comput. Aided Des.
,
30
(
1
), pp.
55
62
. 10.1016/S0010-4485(97)00053-5
36.
Altintas
,
Y.
, and
Khoshdarregi
,
M. R.
,
2012
, “
Contour Error Control of CNC Machine Tools With Vibration Avoidance
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
335
338
. 10.1016/j.cirp.2012.03.132
37.
Zhang
,
K.
,
Yuen
,
A.
, and
Altintas
,
Y.
,
2013
, “
Pre-compensation of Contour Errors in Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
1
11
. 10.1016/j.ijmachtools.2013.07.003
38.
Jia
,
Z.
,
Song
,
D.
,
Ma
,
J.
, and
Gao
,
Y.
,
2017
, “
Pre-compensation for Continuous-Path Running Trajectory Error in High-Speed Machining of Parts With Varied Curvature Features
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
37
45
. 10.3901/CJME.2016.0127.015
39.
Xi
,
X. C.
,
Poo
,
A. N.
, and
Hong
,
G. S.
,
2009
, “
Improving Contouring Accuracy by Tuning Gains for a Bi-Axial CNC Machine
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
395
406
. 10.1016/j.ijmachtools.2008.12.005
40.
Yeung
,
C. H.
,
Altintas
,
Y.
, and
Erkorkmaz
,
K.
,
2006
, “
Virtual CNC System. Part I. System Architecture
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1107
1123
. 10.1016/j.ijmachtools.2005.08.002
41.
Kao
,
J. Y.
,
Yeh
,
Z. M.
,
Tarng
,
Y. S.
, and
Lin
,
Y. S.
,
1996
, “
A Study of Backlash on the Motion Accuracy of CNC Lathes
,”
Int. J. Mach. Tools Manuf.
,
36
(
5
), pp.
539
550
. 10.1016/0890-6955(95)00064-X
42.
Zhang
,
D.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2016
, “
Iterative pre-Compensation Scheme of Tracking Error for Contouring Error Reduction
,”
Int. J. Adv. Manuf. Technol.
,
87
(
912
), pp.
3279
3288
. 10.1007/s00170-016-8735-9
43.
Yeh
,
S. S.
,
Tsai
,
Z. H.
, and
Hsu
,
P. L.
,
2009
, “
Applications of Integrated Motion Controllers for Precise CNC Machines
,”
Int. J. Adv. Manuf. Technol.
,
44
(
9–10
), pp.
906
920
. 10.1007/s00170-008-1919-1
44.
Duong
,
T. Q.
,
Rodriguez-Ayerbe
,
P.
,
Lavernhe
,
S.
,
Tournier
,
C.
, and
Dumur
,
D.
,
2019
, “
Contour Error Pre-compensation for Five-Axis High Speed Machining: Offline Gain Adjustment Approach
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
3113
3125
. 10.1007/s00170-018-2859-z
45.
Song
,
D.
,
Ma
,
J.
,
Jia
,
Z.
, and
Gao
,
Y.
,
2017
, “
Estimation and Compensation for Continuous-Path Running Trajectory Error in High-Feed-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1495
1508
. 10.1007/s00170-016-9202-3
46.
Xi
,
X. C.
,
Poo
,
A. N.
, and
Hong
,
G. S.
,
2008
, “
Taylor Series Expansion Error Compensation for a Bi-Axial CNC Machine
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Singapore
,
Oct. 12–15
, pp.
1614
1619
.
47.
Huo
,
F.
,
Xi
,
X. C.
, and
Poo
,
A. N.
,
2012
, “
Generalized Taylor Series Expansion for Free-Form Two-Dimensional Contour Error Compensation
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
91
99
. 10.1016/j.ijmachtools.2011.10.001
48.
Tang
,
L.
, and
Landers
,
R. G.
,
2013
, “
Multiaxis Contour Control—The State of the art
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
1997
2010
. 10.1109/TCST.2012.2235179
49.
Chen
,
M.
, and
Sun
,
Y.
,
2018
, “
A Moving Knot Sequence-Based Feedrate Scheduling Method of Parametric Interpolator for CNC Machining With Contour Error and Drive Constraints
,”
Int. J. Adv. Manuf. Technol.
,
98
(
1–4
), pp.
487
504
. 10.1007/s00170-018-2279-0
50.
Dong
,
J.
,
Wang
,
T.
,
Li
,
B.
, and
Ding
,
Y.
,
2014
, “
Smooth Feedrate Planning for Continuous Short Line Tool Path With Contour Error Constraint
,”
Int. J. Mach. Tools Manuf.
,
76
, pp.
1
12
. 10.1016/j.ijmachtools.2013.09.009
51.
Dorf
,
R. C.
, and
Bishop
,
R. H.
,
2010
,
Modern Control Systems
, 12th ed,
Prentice Hall
,
Upper Saddle River, NJ
.
52.
Bi
,
Q.
,
Shi
,
J.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
96
108
. 10.1016/j.ijmachtools.2015.02.002
53.
Sun
,
Y.
,
Chen
,
M.
,
Jia
,
J.
,
Lee
,
Y.
, and
Guo
,
D.
,
2019
, “
Jerk-limited Feedrate Scheduling and Optimization for Five-Axis Machining Using New Piecewise Linear Programming Approach
,”
Sci. China. Tech. Sci.
,
62
(
7
), pp.
1067
1081
. 10.1007/s11431-018-9404-9
54.
Yang
,
M.
,
Yang
,
J.
, and
Ding
,
H.
,
2018
, “
A Two-Stage Friction Model and Its Application in Tracking Error Pre-compensation of CNC Machine Tools
,”
Precis. Eng.
,
51
, pp.
426
436
. 10.1016/j.precisioneng.2017.09.014
You do not currently have access to this content.