The improvement of the waste management efficiency and sustainability in the electronics sector requires the disassembly and reuse of valuable electronic components, instead of their recycling for precious materials recovery. In this context, this study proposes a robotic system for the disassembly of electronic components, grounded on the revamping of an existing soldering machine. First, the feasibility of an automated process for the end of life (EoL) management of electronic boards is investigated: the disassembly and reuse of electronic components represents a potential cost saving opportunity for producers of industrial electronic boards, other than an effective means to improve the environmental sustainability of the electronics sector. Then, the automatic system has been designed; it is mainly composed by a wave soldering machine, a two-axis manipulator equipped with a suction cup for components picking, and a central control unit to coordinate the motion. Finally, the prototype of the disassembly equipment has been realized. The experimental tests aimed at setting the most relevant process parameters (e.g., working temperatures) and verifying the performance of the developed disassembly equipment. Results confirmed the effectiveness and the reliability of the prototype: all the 450 microprocessors disassembled from 50 boards resulted to be not damaged and thus directly reusable in new boards without the need of additional treatments (e.g., washing).

References

1.
European Parliament and Council
,
2013
, “
Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’
,” European Parliament and Council, Brussels, Belgium.
2.
European Commission
,
2015
, “
COM(2015) 614 Final—Closing the Loop—An EU Action Plan for the Circular Economy
,” European Commission, Brussels, Belgium.
3.
Fukushige
,
S.
,
Yamamoto
,
K.
, and
Umeda
,
Y.
,
2012
, “
Lifecycle Scenario Design for Product End-of-Life Strategy
,”
J. Remanuf.
,
2
(
1
), pp. 1–15.
4.
Ellen MacArthur Foundation, McKinsey Centre for Business and Environment, and Stiftungsfonds für Umweltökonomie und Nachhaltigkeit (SUN)
,
2015
, “
Growth Within: A Circular Economy Vision for a Competitive Europe
,” Ellen MacArthur Foundation, Chicago, IL, pp. 1–98.
5.
European Commission - DG Environment
,
2014
, “
Development of Guidance on Extended Producer Responsibility (EPR) - Final Report
,” European Commission, Brussels, Belgium, pp. 1–227.
6.
Widmer
,
R.
,
Oswald-Krapf
,
H.
,
Sinha-Khetriwal
,
D.
,
Schnellmann
,
M.
, and
Boni
,
H.
,
2005
, “
Global Perspectives on e-Waste
,”
Environ. Impact Assess. Rev.
,
25
(
5
), pp.
436
458
.
7.
Mazon
,
M. T.
,
Martiniano de Azevedo
,
A. M.
,
Muller Pereira
,
N.
, and
Silveira
,
M. A.
,
2012
, “
Does Environmental Regulation Foster the Diffusion of Collaborative Innovations? A Study on Electronics Waste Regulation on Brazil
,”
Procedia Soc. Behav. Sci.
,
52
, pp.
259
268
.
8.
Rahimifard
,
S.
,
Abu Bakar
,
M. S.
, and
Williams
,
D. J.
,
2009
, “
Recycling Process Planning for the End-of-Life Management of Waste From Electrical and Electronic Equipment
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
5
8
.
9.
European Parliament and Council
,
2012
, “
Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE)
,” European Parliament and Council, Brussels, Belgium.
10.
Eurostat
,
2014
, “
Statistics Explained
,” Luxembourg City, Luxembourg, accessed Nov. 24, 2018, https://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page
11.
Long
,
E.
,
Kokke
,
S.
,
Lundie
,
D.
,
Shaw
,
N.
,
Ijomah
,
W.
, and
Kao
,
C.-C.
,
2016
, “
Technical Solutions to Improve Global Sustainable Management of Waste Electrical and Electronic Equipment (WEEE) in the EU and China
,”
J. Remanuf.
,
6
(
1
), p. 27.https://www.econstor.eu/bitstream/10419/155510/1/874370426.pdf
12.
Duan
,
H.
,
Hu
,
J.
,
Yuan
,
W.
,
Wang
,
Y.
,
Yu
,
D.
,
Song
,
Q.
, and
Li
,
J.
,
2016
, “
Characterizing the Environmental Implications of the Recycling of Non-Metallic Fractions From Waste Printed Circuit Boards
,”
J. Clean. Prod.
,
137
, pp.
546
554
.
13.
Xu
,
X.
,
Zhang
,
Y.
,
Yeken
,
T. A.
,
Li
,
Y.
,
Zhuang
,
B.
, and
Huo
,
X.
,
2014
, “
Increase Male Genital Diseases Morbidity Linked to Informal Electronic Waste Recycling in Guiyu, China
,”
Environm. Sci. Pollut. Res.
,
21
(
5
), pp.
3540
3545
.
14.
Wu
,
Q.
,
Leung
,
J. Y. S.
,
Geng
,
X.
,
Chen
,
S.
,
Huang
,
X.
,
Li
,
H.
,
Huang
,
Z.
,
Zhu
,
L.
,
Chen
,
J.
, and
Lu
,
Y.
,
2015
, “
Heavy Metal Contamination of Soil and Water in the Vicinity of an Abandoned e-Waste Recycling Site: Implications for Dissemination of Heavy Metals
,”
Sci. Total Environ.
,
506-507
, pp.
217
225
.
15.
Li
,
J.
,
Barwood
,
M.
, and
Rahimifard
,
S.
,
2018
, “
Robotic Disassembly for Increased Recovery of Strategically Important Materials From Electrical Vehicles
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
203
212
.
16.
Wang
,
J.
,
Guo
,
J.
, and
Xu
,
Z.
,
2016
, “
An Environmentally Friendly Technology of Disassembling Electronic Components From Waste Printed Circuit Boards
,”
Waste Manage.
,
53
, pp.
218
224
.
17.
Lee
,
J.
,
Kim
,
Y. J.
, and
Lee
,
J. C.
,
2012
, “
Disassembly and Physical Separation of Electric/Electronic Components Layered in Printed Circuit Boards (PCB)
,”
J. Hazard. Mater.
,
241–242
, pp.
387
394
.
18.
Haruta
,
T.
,
Nagano
,
T.
,
Kishimoto
,
T.
,
Yamada
,
Y.
, and
Yuno
,
T.
,
1991
, “
Process for Removing in and Tin-Lead Alloy From Copper Substrates
,” U.S. Patent No.
US5035749A
.https://patents.google.com/patent/US5035749
19.
Yokoyama
,
S. M.
,
1997
, “
Recycling of Printed Wiring Boards With Mounted Electronic Parts
,”
IEEE
International Symposium on Electronics and the Environment
, San Francisco, CA, May 5–7, pp.
109
114
.
20.
Ding
,
X.
,
Xiang
,
D.
,
Lium
,
X.
, and
Yang
,
J.
,
2008
, “
Delamination Failure in Plastic IC Packages Disassembled From Scrapped Printed Circuit Boards Engineering
,”
Global Conference on Sustainable Product Development and Life Cycle Sustainability and Remanufacturing
,
Busan, South Korea
,
Sept. 29–Oct 1
.
21.
Gao
,
P.
,
Xiang
,
D.
,
Yang
,
J.
,
Cheng
,
Y.
,
Duan
,
G.
, and
Ding
,
X.
,
2008
, “
Optimization of PCB Disassembly Heating Parameters Based on Genetic Algorithm
,”
Mod. Manuf. Eng.
,
8
, pp.
92
95
.
22.
Pan
,
X. Y.
,
Li
,
Z. L.
,
Zhi
,
H.
, and
Wang
,
L.
,
2007
, “
Method and Apparatus of Separation for Electronic Components and Solders From Printed Circuit Boards
,” Chinese Patent No. 2007102015321.
23.
Li
,
Z. L.
,
Zhi
,
H.
,
Pan
,
X. Y.
,
Liu
,
H. L.
, and
Wang
,
L.
,
2008
, “
The Equipment of Dismantling for Electronic Components From Printed Circuit Boards
,” Chinese Patent No. 2008103057561.
24.
Gao
,
R.
,
2007
, “
Research on With Dismantling of PCB Mounted Electronic Components
,” M.S. dissertation, China Academy of Machinery Science and Technology, Beijing, China.
25.
Zhong
,
H.
,
Song
,
S.
,
Liu
,
Z.
, and
Zhang
,
H.
,
2008
, “
Research on Disassembling Electronic Components on Discarded PCBs With Hot Fluid
,”
Mach. Des. Manuf.
,
4
, pp.
101
103
.
26.
Frank
,
M. C.
,
2014
, “
The Recycling of Computer Circuit Boards
,” North Carolina Division of Environmental Assistance and Customer Service, Raleigh, NC, accessed Nov. 24, 2018, http://www.p2pays.org/ref/02/01469.pdf
27.
Zhao
,
Z.
,
Wang
,
Y.
,
Song
,
S.
,
Liu
,
G.
, and
Liu
,
Z.
,
2009
, “
Development and Application of Unsoldering Equipment for Printed Circuit Board Scraps
,”
Modul. Mach. Tool Autom. Manuf. Technol.
,
10
, pp.
95
98
.
28.
Knoth
,
R.
,
Hoffmann
,
M.
,
Kopacek
,
B.
, and
Kopacek
,
P.
,
2001
, “
Intelligent Disassembly of Electr(on)ic Equipment
,”
Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, Tokyo, Japan, Dec. 11–15, pp.
557
561
.
29.
Zhou
,
Y.
,
Wu
,
W.
, and
Qiu
,
K.
,
2010
, “
Recovery of Materials From Waste Printed Circuit Boards by Vacuum Pyrolysis and Vacuum Centrifugal Separation
,”
Waste Manage.
,
30
(
11
), pp.
2299
2304
.
30.
Ruggeri
,
S.
,
Fontana
,
G.
,
Basile
,
V.
,
Valori
,
M.
, and
Fassi
,
I.
,
2017
, “
Micro-Robotic Handling Solutions for PCB (Re-)Manufacturing
,”
Procedia Manuf.
,
11
, pp.
441
448
.
31.
Weigl-Seitz
,
A.
,
Hohm
,
K.
,
Seitz
,
M.
, and
Tolle
,
H.
,
2006
, “
On Strategies and Solutions for Automated Disassembly of Electronic Devices
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5–6
), pp.
561
573
.
32.
ElSayed
,
A.
,
Kongar
,
E.
,
Gupta
,
S. M.
, and
Sobh
,
T.
,
2012
, “
A Robotic-Driven Disassembly Sequence Generator for End-of-Life Electronic Products
,”
J. Intell. Rob. Syst. Theory Appl.
,
68
(
1
), pp.
43
52
.
33.
Austrian Society for Systems Engineering and Automation
,
2018
, “
Overview of Selected Projects
,” Austrian Society for Systems Engineering and Automation, Vienna, Austria, accessed on Nov. 24, 2018, http://www.sat-research.at/
34.
Knoth
,
R.
,
Hoffmann
,
M.
,
Kopacek
,
B.
, and
Kopacek
,
P.
,
2001
, “
A Logistic Concept to Improve the Re-Usability of Electric and Electronic Equipment
,”
IEEE International Symposium on Electronics and the Environment
, Denver, CO, May 7–9, pp.
115
118
.
35.
Hoffmann
,
R.
,
Kopacek
,
B.
,
Kopacek
,
P.
, and
Knoth
,
R.
,
2001
, “
Design for Re-Use and Disassembly
,”
Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, Tokyo, Japan, Dec. 11–15, pp.
378
381
.
36.
Telcordia Technologies
,
2016
, “
Reliability Prediction Procedure for Electronic Equipment
,” Telcordia Technologies, Bridgewater, NJ, Document Number.
SR-332
.https://telecom-info.telcordia.com/site-cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT=SR-332&
37.
Marconi
,
M.
,
Favi
,
C.
,
Germani
,
M.
,
Mandolini
,
M.
, and
Mengarelli
,
M.
,
2017
, “
A Collaborative End of Life Platform to Favour the Reuse of Electronic Components
,”
Procedia CIRP
,
61
, pp.
166
171
.
38.
ISO
,
2006
, “
Environmental Management—Life Cycle Assessment—Principles and Framework
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 14040: 2006.
https://www.iso.org/standard/37456.html
39.
Wernet
,
G.
,
Bauer
,
C.
,
Steubing
,
B.
,
Reinhard
,
J.
,
Moreno-Ruiz
,
E.
, and
Weidema
,
B.
,
2016
, “
The Ecoinvent Database Version 3—Part I: Overview and Methodology
,”
Int. J. Life Cycle Assess.
,
21
(
9
), pp.
1218
1230
.
40.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
De Schryver
,
A.
,
Struijs
,
J.
, and
van Zelm
,
R.
,
2013
, “ReCiPe 2008: A Lifecycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level,” Report I: Characterisation, Dutch Ministry of Housing, Spatial Planning and Environment (
VROM
), The Hague, The Netherlands, pp. 1–126.https://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf
41.
Illés
,
B.
, and
Géczy
,
A.
,
2012
, “
Multi-Physics Modelling of a Vapour Phase Soldering (VPS) System
,”
Appl. Therm. Eng.
,
48
, pp.
54
62
.
You do not currently have access to this content.