The purpose of this research is to present a generic method to estimate product disassembly time at detail stage by utilizing Boothroyd and Dewhurst classification form. Disassembly time is critical in decision-making process of end-of-life (EOL) operations, such as reuse, recycling, and remanufacturing. Theoretical assembly time for a design can be estimated using well-established Boothroyd and Dewhurst's method, given an assembly sequence. This method breaks single component assembly time into acquisition time, manual time, and insertion time. However, in disassembly processes, component symmetry features are, in most cases, unnecessary. Based on this fact, a hypothesis is made that a component's disassembly time can be estimated by considering replacing time, part removal time, and elements of surrounding components, including visibility, accessibility, and any additional effort. Fastening component disassembly time can be estimated by replacement time and time consumed by thread number. An assembly model is designed to verify this hypothesis with a predefined disassembly sequence. Totally, 31 undergraduate students took part in the manual assembly and disassembly experiment. Difference between theoretical and manual assembly times was found to be 7.4% while the difference between theoretical and manual disassembly times was 2.4%. Statistical evaluation indicated that the theoretical disassembly time falls within manual disassembly time with 95% confidence interval. To further validate the methods, two case studies are carried out with distinct products under same experimental environment. The approach proposed in this study can estimate disassembly time of a product at detail design stage when disassembly sequence is provided. Future work will focus on automating this method while incorporating selective and destructive disassembly time estimations.

References

1.
Rose
,
C. M.
,
Beiter
,
K. A.
, and
Ishii
K.
,
1999
, “
Determining End-of-Life Strategies as a Part of Product Definition
,” IEEE International Symposium on Electronics and the Environment (
ISEE
), Danvers, MA, May 13, pp. 219–224.
2.
Srinivasan
,
R.
,
2011
, “
Sustainability Analysis and Connective Complexity Method for Selective Disassembly Time Prediction
,”
M.S. thesis
, Washington State University, Pullman, WA.http://www.dissertations.wsu.edu/Thesis/Fall2011/r_srinivasan_020712.pdf
3.
Glavič
,
P.
, and
Lukman
,
R.
,
2007
, “
Review of Sustainability Terms and Their Definitions
,”
J. Cleaner Prod.
,
15
(
18
), pp.
1875
1885
.
4.
Subramani
,
A. K.
, and
Dewhurst
,
P.
,
1991
, “
Automatic Generation of Product Disassembly Sequences
,”
CIRP Ann.
,
40
(1), pp. 115–118.
5.
Bogue
,
R.
,
2007
, “
Design for Disassembly: A Critical Twenty-First Century Discipline
,”
Assem. Autom.
,
27
(
4
), pp.
285
289
.
6.
Harjula
,
T.
,
Rapoza
,
B.
,
Knight
,
W. A.
, and
Boothroyd
G.
,
1996
, “
Design for Disassembly and the Environment
,”
CIRP Ann.
,
45
(
1
), pp.
109
114
.
7.
Cappelli
,
F.
,
Delogu
,
M.
,
Pierini
,
M.
, and
Schiavone
,
F.
,
2007
, “
Design for Disassembly: A Methodology for Identifying the Optimal Disassembly Sequence
,”
J. Eng. Des.
,
18
(
6
), pp.
563
575
.
8.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
,
1997
, “
Automated Manufacturability Analysis: A Survey
,”
Res. Eng. Des.
,
9
(
3
), pp.
168
190
.
9.
Kroll
,
E.
,
1996
, “
Application of Work-Measurement Analysis to Product Disassembly for Recycling
,”
Concurrent Eng.
,
4
(
2
), pp.
149
158
.
10.
Kroll
,
E.
, and
Carver
,
B. S.
,
1999
, “
Disassembly Analysis Through Time Estimation and Other Metrics
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
191
200
.
11.
Zandin
,
K. B.
,
2002
,
MOST Work Measurement Systems
, 3rd ed.,
CRC Press
,
New York
.
12.
Desai
,
A.
, and
Mital
,
A.
,
2003
, “
Evaluation of Disassemblability to Enable Design for Disassembly in Mass Production
,”
Int. J. Ind. Ergonom.
,
32
(
4
), pp.
265
281
.
13.
Kroll
,
E.
,
Beardsley
,
B.
, and
Parulian
,
A.
,
1996
, “
A Methodology to Evaluate Ease of Disassembly for Product Recycling
,”
IIE Trans.
,
28
(
10
), pp.
837
845
.
14.
Zussman
,
E.
,
Kriwet
,
A.
, and
Seliger
,
G.
,
1994
, “
Disassembly-Oriented Assessment Methodology to Support Design for Recycling
,”
CIRP Ann.-Manuf. Technol.
,
43
(
1
), pp.
9
14
.
15.
Yi
,
H. C.
,
Park
,
Y. C.
, and
Lee
,
K. S.
,
2003
, “
A Study on the Method of Disassembly Time Evaluation of a Product Using Work Factor Method
,”
IEEE
International Conference on Systems, Man and Cybernetics
, Washington, DC, Oct. 8, pp.
1753
1759
.
16.
Zhang
,
H. C.
,
Kuo
,
T. C.
,
Lu
,
H.
, and
Huang
,
S. H.
,
1997
, “
Environmentally Conscious Design and Manufacturing: A State of the Art Survey
,”
J. Manuf. Syst.
,
16
(
5
), pp.
352
371
.
17.
Lambert
,
A. J. D.
, and
Gupta
,
S. M.
,
2005
,
Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling
,
CRC Press
,
London
.
18.
Lambert
,
A. J. D.
,
2003
, “
Disassembly Sequencing: A Survey
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.
19.
Smith
,
S.
, and
Hung
,
P.
,
2015
, “
A Novel Selective Parallel Disassembly Planning Method for Green Design
,”
J. Eng. Des.
,
26
(
10–12
), pp.
283
301
.
20.
Smith
,
S.
,
Smith
,
G.
, and
Chen
,
W.
,
2012
, “
Disassembly Sequence Structure Graphs: An Optimal Approach for Multiple-Target Selective Disassembly Sequence Planning
,”
Adv. Eng. Inf.
,
26
(
2
), pp.
306
316
.
21.
Sanchez
,
B.
, and
Haas
,
C.
,
2018
, “
A Novel Selective Disassembly Sequence Planning Method for Adaptive Reuse of Buildings
,”
J. Cleaner Prod.
,
183
, pp.
998
1010
.
22.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1990
, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
188
199
.
23.
Dutta
,
D.
, and
Woo
,
T. C.
,
1995
, “
Algorithm for Multiple Disassembly and Parallel Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
117
(
1
), pp.
102
109
.
24.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1988
, “
Automatic Generation of Mechanical Assembly Sequences
,” Carnegie Mellon University, Pittsburg, PA, Report No.
ADA204234
.https://apps.dtic.mil/docs/citations/ADA204234
25.
Mathur
,
R. K.
,
Munger
,
R.
, and
Sanderson
,
A. C.
,
1992
, “
Hierarchical Planning for Space-Truss Assembly
,”
Intelligent Robotic Systems for Space Exploration
,
A.
Desrochers
, ed., Springer, New York, p. 345.
26.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2011
,
Product Design for Manufacture and Assembly
,
CRC Press
,
Boca Raton, FL
.
27.
Mathieson
,
J. L.
,
Wallace
,
B. A.
, and
Summers
,
J. D.
,
2013
, “
Assembly Time Modelling Through Connective Complexity Metrics
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
1
13
.
28.
Miller
,
M. G.
,
Summers
,
J. D.
,
Mathieson
,
J. L.
, and
Mocko
,
G. M.
,
2014
, “
Manufacturing Assembly Time Estimation Using Structural Complexity Metric Trained Artificial Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(1), p.
011005
.
29.
Owensby
,
J. E.
, and
Summers
,
J. D.
,
2014
, “
Assembly Time Estimation: Assembly Mate Based Structural Complexity Metric Predictive Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(1), p.
011004
.
30.
Das
,
S. K.
, and
Naik
,
S.
,
2002
, “
Process Planning for Product Disassembly
,”
Int. J. Prod. Res.
,
40
(
6
), pp.
1335
1355
.
31.
Rakshit
,
S.
, and
Akella
,
S.
,
2015
, “
The Influence of Motion Path and Assembly Sequence on the Stability of Assemblies
,”
IEEE Rob.: Sci. Syst.
,
12
(
2
), pp.
615
627
.
32.
Kongar
,
E.
, and
Gupta
,
S. M.
,
2006
, “
Disassembly Sequencing Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5–6
), pp.
497
506
.
33.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1998
, “
Disassembly Sequence Planning for Products With Defective Parts in Product Recovery
,”
Comput. Ind. Eng.
,
35
(
1–2
), pp.
161
164
.
34.
Gupta
,
S. M.
, and
McLean
,
C. R.
,
1996
, “
Disassembly of Products
,”
Comput. Ind. Eng.
,
31
(
1–2
), pp.
225
228
.
35.
Lee
,
K.
, and
Gadh
,
R.
,
1998
, “
Destructive Disassembly to Support Virtual Prototyping
,”
IIE Trans.
,
30
(
10
), pp.
959
972
.
36.
Reap
,
J.
, and
Bras
,
B.
,
2002
, “
Design for Disassembly and the Value of Robotic Semi-Destructive Disassembly
,”
ASME
Paper No. DETC2002/DFM-34181
.
37.
Song
,
X.
,
Zhou
,
W.
,
Pan
,
X.
, and
Feng
,
K.
,
2014
, “
Disassembly Sequence Planning for Electro-Mechanical Products Under a Partial Destructive Mode
,”
Assem. Autom.
,
34
(
1
), pp.
106
114
.
38.
Puente
,
S. T.
,
Torres
,
F.
,
Reinoso
,
O.
, and
Paya
,
L.
,
2010
, “
Disassembly Planning Strategies for Automatic Material Removal
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
339
350
.
39.
Vongbunyong
,
S.
,
Kara
,
S.
, and
Pagnucco
,
M.
,
2013
, “
Application of Cognitive Robotics in Disassembly of Products
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
31
34
.
40.
Hu
,
Y.
,
Srinivasan
,
R.
,
Spoll
,
J.
, and
Ameta
,
G.
,
2013
, “
Graph Based Method and Tool for Complete and Selective Disassembly Time Estimation in Early Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031005
.
41.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
,
Oxford, UK
.
42.
Smith
,
C.
,
1990
,
Carroll Smith's Nuts, Bolts, Fasteners, and Plumbing Handbook
,
MotorBooks/MBI Publishing Company
,
St. Paul, MN
.
43.
Ross
,
S.
,
2009
,
A First Course in Probability
, 8th ed.,
Pearson
,
Upper Saddle River, NJ
.
44.
Gehin
,
A.
,
Zwolinski
,
P.
, and
Brissaud
,
D.
,
2008
, “
A Tool to Implement Sustainable End-of-Life Strategies in the Product Development Phase
,”
J. Cleaner Prod.
,
16
(
5
), pp.
566
576
.
You do not currently have access to this content.