The evolution of the manufacturing industry has favored the use of new technologies that increase the level of autonomy in production systems. The work presented shows a methodology that allows for online estimation of cutting parameters based on the analysis of the cutting force signal pattern. The dynamic response of the tool is taken into account through a function that relates the response time to the input variables in the process. The force signal is obtained with a dynamometric platform based on piezoelectric sensors. The final section of the paper shows the experimental validation where machining tests with variable machining conditions were carried out. The results reveal high precision in the estimation of depths of cut in end milling.
Skip Nav Destination
Article navigation
August 2018
Technical Briefs
Identification of the Actual Process Parameters for Finishing Operations in Peripheral Milling
E. Leal-Muñoz,
E. Leal-Muñoz
Departamento de Ingeniería Mecánica,
Universidad de La Frontera,
Temuco 4811230, Chile;
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
Universidad de La Frontera,
Temuco 4811230, Chile;
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
Search for other works by this author on:
E. Diez,
E. Diez
Departamento de Ingeniería Mecánica,
Universidad de La Frontera,
Temuco 4811230, Chile
e-mail: eduardo.diez@ufrontera.cl
Universidad de La Frontera,
Temuco 4811230, Chile
e-mail: eduardo.diez@ufrontera.cl
Search for other works by this author on:
H. Perez,
H. Perez
Departamento de Ingenierías Mecánica,
Informática y Aeroespacial,
Universidad de León,
León 24071, España
Informática y Aeroespacial,
Universidad de León,
León 24071, España
Search for other works by this author on:
A. Vizan
A. Vizan
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
Universidad Politécnica de Madrid,
Madrid 28006, España
Search for other works by this author on:
E. Leal-Muñoz
Departamento de Ingeniería Mecánica,
Universidad de La Frontera,
Temuco 4811230, Chile;
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
Universidad de La Frontera,
Temuco 4811230, Chile;
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
E. Diez
Departamento de Ingeniería Mecánica,
Universidad de La Frontera,
Temuco 4811230, Chile
e-mail: eduardo.diez@ufrontera.cl
Universidad de La Frontera,
Temuco 4811230, Chile
e-mail: eduardo.diez@ufrontera.cl
H. Perez
Departamento de Ingenierías Mecánica,
Informática y Aeroespacial,
Universidad de León,
León 24071, España
Informática y Aeroespacial,
Universidad de León,
León 24071, España
A. Vizan
Departamento de Ingeniería Mecánica,
Universidad Politécnica de Madrid,
Madrid 28006, España
Universidad Politécnica de Madrid,
Madrid 28006, España
Manuscript received December 19, 2017; final manuscript received April 3, 2018; published online May 21, 2018. Assoc. Editor: Guillaume Fromentin.
J. Manuf. Sci. Eng. Aug 2018, 140(8): 084502 (7 pages)
Published Online: May 21, 2018
Article history
Received:
December 19, 2017
Revised:
April 3, 2018
Citation
Leal-Muñoz, E., Diez, E., Perez, H., and Vizan, A. (May 21, 2018). "Identification of the Actual Process Parameters for Finishing Operations in Peripheral Milling." ASME. J. Manuf. Sci. Eng. August 2018; 140(8): 084502. https://doi.org/10.1115/1.4039917
Download citation file:
Get Email Alerts
Cited By
Design and Manufacture of Power Skiving Cutter From Target Circular Spline Geometry
J. Manuf. Sci. Eng (September 2023)
Experimental Investigation and Modeling of the Kerf Profile in Submerged Milling by Macro Abrasive Waterjet
J. Manuf. Sci. Eng (September 2023)
Modeling Variation in Multi-Station Compliant Assembly Using Parametric Space Envelope
J. Manuf. Sci. Eng (September 2023)
Thickness Control of Autoclave-Molded Composite Laminates
J. Manuf. Sci. Eng (September 2023)
Related Articles
Parameter Inference Under Uncertainty in End-Milling γ′-Strengthened Difficult-to-Machine Alloy
J. Manuf. Sci. Eng (June,2016)
Robust Tool Wear Monitoring Using Systematic Feature Selection in Turning Processes With Consideration of Uncertainties
J. Manuf. Sci. Eng (August,2018)
Cloud-Based Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real-Time Monitoring
J. Manuf. Sci. Eng (August,2015)
A Method for Mode Coupling Chatter Detection and Suppression in Robotic Milling
J. Manuf. Sci. Eng (August,2018)
Related Proceedings Papers
Related Chapters
Cutting Force Analysis of Turn-Milling Micro-Miniature Parts
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Cutting Performance and Wear Mechanism of Cutting Tool in Milling of High Strength Steel 34CrNiMo6
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Relationship Between Tool Deterioration and Cutting Force During Milling of a Nickel-Based Superalloy Using Cemented Carbide Tool
Advances in Multidisciplinary Engineering