The cutting force is one of the key factors for planning and optimizing the machining operation in material removal processes. An analytical cutting force prediction model that takes into consideration both edge effects and size effects based on the oblique cutting theory is developed and analyzed in this study. A detailed analysis of the cutting geometry is presented based on the coordinate system transformation and uncut chip thickness (UCT), which is evaluated on the rake plane instead of the reference plane. Then, the developed Johnson–Cook constitutive model of the workpiece that takes into consideration the size effects is then applied to the prediction of edge forces coefficients and cutting forces coefficients. The edge forces are predicted using the edge coefficients prediction model with the regularity found in the orthogonal simulations, which reflect the influences of chamfered length and chamfered angle. The developed model is validated using the turning operations of super alloys with round chamfered inserts. Finally, the effects of the cutter edge, cutting parameters, and UCT on the cutting forces are investigated using the developed model. The reasonableness and effectiveness of the proposed model is demonstrated through the comparison of the measured and predicted cutting forces for various chamfer characteristics.

References

1.
Campocasso
,
S.
,
Costes
,
J. P.
,
Fromentin
,
G.
,
Bissey-Breton
,
S.
, and
Poulachon
,
G.
,
2015
, “
A Generalised Geometrical Model of Turning Operations for Cutting Force Modelling Using Edge Discretisation
,”
Appl. Math. Modell.
,
39
(
21
), pp.
6612
6630
.
2.
Armarego
,
E. J. A.
, and
Samaranayake
,
P.
,
1999
, “
Performance Prediction Models for Turning With Rounded Corner Plane Faced Lathe Tools—I: Theoretical Development
,”
Mach. Sci. Technol.
,
3
(
2
), pp.
143
172
.
3.
Dorlin
,
T.
,
Fromentin
,
G.
, and
Costes
,
J.-P.
,
2016
, “
Generalised Cutting Force Model Including Contact Radius Effect for Turning Operations on Ti6Al4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
3297
3313
.
4.
D'Acunto
,
A.
,
Le Coz
,
G.
,
Moufki
,
A.
, and
Dudzinski
,
D.
,
2017
, “
Effect of Cutting Edge Geometry on Chip Flow Direction—Analytical Modelling and Experimental Validation
,”
Procedia CIRP
,
58
, pp.
353
357
.
5.
He
,
G.
,
Liu
,
X.
,
Wu
,
C.
,
Zhang
,
S.
,
Zou
,
L.
, and
Li
,
D.
,
2016
, “
Study on the Negative Chamfered Edge and Its Influence on the Indexable Cutting Insert's Lifetime and Its Strengthening Mechanism
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1229
1237
.
6.
Ventura
,
C. E. H.
,
Köhler
,
J.
, and
Denkena
,
B.
,
2014
, “
Strategies for Grinding of Chamfers in Cutting Inserts
,”
Precis. Eng.
,
38
(
4
), pp.
749
758
.
7.
Karpat
,
Y. I.
, and
Özel
,
T. R.
,
2008
, “
Mechanics of High Speed Cutting With Curvilinear Edge Tools
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
195
208
.
8.
Fuh
,
K.
, and
Chang
,
C.
,
1995
, “
Prediction of the Cutting Forces for Chamfered Main Cutting Edge Tools
,”
Int. J. Mach. Tools Manuf.
,
35
(
11
), pp.
1559
1586
.
9.
Chang
,
C.
, and
Fuh
,
K.
,
1998
, “
An Experimental Study of the Chip Flow of Chamfered Main Cutting Edge Tools
,”
J. Mater. Process. Technol.
,
73
(
1–3
), pp.
167
178
.
10.
Zhuang
,
K.
,
Zhu
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2014
, “
Notch Wear Prediction Model in Turning of Inconel 718 With Ceramic Tools Considering the Influence of Work Hardened Layer
,”
Wear
,
313
(
1–2
), pp.
63
74
.
11.
Li
,
L.
,
Li
,
B.
,
Li
,
X.
, and
Ehmann
,
K. F.
,
2013
, “
Experimental Investigation of Hard Turning Mechanisms by PCBN Tooling Embedded Micro Thin Film Thermocouples
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041012
.
12.
Klocke
,
F.
, and
Kratz
,
H.
,
2005
, “
Advanced Tool Edge Geometry for High Precision Hard Turning
,”
CIRP Ann-Manuf. Technol.
,
54
(
1
), pp.
47
50
.
13.
Ren
,
H.
, and
Altintas
,
Y.
,
2000
, “
Mechanics of Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
650
659
.
14.
Fang
,
N.
, and
Wu
,
Q.
,
2005
, “
The Effects of Chamfered and Honed Tool Edge Geometry in Machining of Three Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
10
), pp.
1178
1187
.
15.
Karpat
,
Y.
, and
Özel
,
T.
,
2007
, “
Analytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011001
.
16.
Özel
,
T.
,
Karpat
,
Y.
, and
Srivastava
,
A.
,
2008
, “
Hard Turning With Variable Micro-Geometry PCBN Tools
,”
CIRP Ann-Manuf. Technol.
,
57
(
1
), pp.
73
76
.
17.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Experimental Evaluation and Modeling Analysis of Micromilling of Hardened H13 Tool Steels
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041007
.
18.
Zhang
,
X.-M.
,
Chen
,
L.
, and
Ding
,
H.
,
2016
, “
Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074502
.
19.
Kalyan
,
C.
, and
Samuel
,
G.
,
2015
, “
Cutting Mode Analysis in High Speed Finish Turning of AlMgSi Alloy Using Edge Chamfered PCD Tools
,”
J. Mater. Process. Technol.
,
216
, pp.
146
159
.
20.
Weng
,
J.
,
Zhuang
,
K.
,
Chen
,
D.
,
Guo
,
S.
, and
Ding
,
H.
,
2017
, “
An Analytical Force Prediction Model for Turning Operation by Round Insert Considering Edge Effect
,”
Int. J. Mech. Sci.
,
128–129
, pp.
168
180
.
21.
Weng
,
J.
,
Zhuang
,
K.
,
Zhu
,
D.
,
Guo
,
S.
, and
Ding
,
H.
,
2018
, “
An Analytical Model for the Prediction of Force Distribution of Round Insert Considering Edge Effect and Size Effect
,”
Int. J. Mech. Sci.
,
138–139
, pp.
86
98
.
22.
Dudzinski
,
D.
, and
Molinari
,
A.
,
1997
, “
A Modelling of Cutting for Viscoplastic Materials
,”
Int. J. Mech. Sci.
,
39
(
4
), pp.
369
389
.
23.
Li
,
B.
,
Hu
,
Y.
,
Wang
,
X.
,
Li
,
C.
, and
Li
,
X.
,
2011
, “
An Analytical Model of Oblique Cutting With Application to End Milling
,”
Mach. Sci. Technol.
,
15
(
4
), pp.
453
484
.
24.
Molinari
,
A.
, and
Moufki
,
A.
,
2005
, “
A New Thermomechanical Model of Cutting Applied to Turning Operations—Part I: Theory
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
166
180
.
25.
Moufki
,
A.
,
Dudzinski
,
D.
, and
Le Coz
,
G.
,
2015
, “
Prediction of Cutting Forces From an Analytical Model of Oblique Cutting, Application to Peripheral Milling of Ti-6Al-4V Alloy
,”
Int. J. Adv. Manuf. Technol
,
81
(
1–4
), pp.
615
626
.
26.
Oxley
,
P.
,
1962
, “
Shear Angle Solutions in Orthogonal Machining
,”
Int. J. Mach. Tools Manuf.
,
2
(
3
), pp.
219
229
.
27.
Li
,
B.
,
Wang
,
X.
,
Hu
,
Y.
, and
Li
,
C.
,
2011
, “
Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shear-Zone Model
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
431
443
.
28.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process—Part I: Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
.
29.
Fu
,
Z.
,
Yang
,
W.
,
Wang
,
X.
, and
Leopold
,
J.
,
2016
, “
An Analytical Force Model for Ball-End Milling Based on a Predictive Machining Theory Considering Cutter Runout
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2449
2460
.
30.
Zhou
,
L.
,
Peng
,
F.
,
Yan
,
R.
,
Yao
,
P.
,
Yang
,
C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
31.
Gao
,
H.
, and
Huang
,
Y.
,
2001
, “
Taylor-Based Nonlocal Theory of Plasticity
,”
Int. J. Solids Struct.
,
38
(
15
), pp.
2615
2637
.
32.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
,
1969
,
The Machining of Metals
,
Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
34.
Wyen
,
C.
, and
Wegener
,
K.
,
2010
, “
Influence of Cutting Edge Radius on Cutting Forces in Machining Titanium
,”
CIRP Ann-Manuf. Technol.
,
59
(
1
), pp.
93
96
.
35.
Abdelmoneim
,
M. E.
, and
Scrutton
,
R.
,
1974
, “
Tool Edge Roundness and Stable Build-Up Formation in Finish Machining
,”
J. Eng. Ind.
,
96
(
4
), pp.
1258
1267
.
36.
Third Wave Systems, 2007,
AdvantEdgeTM User's Manual Version 5.1
, Third Wave Systems Inc., Eden Prairie, MN.
37.
Umbrello
,
D.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.
38.
Ahmed
,
N.
,
Mitrofanov
,
A.
,
Babitsky
,
V.
, and
Silberschmidt
,
V.
,
2006
, “
Analysis of Material Response to Ultrasonic Vibration Loading in Turning Inconel 718
,”
Mater. Sci. Eng., A
,
424
(
1–2
), pp.
318
325
.
39.
Ghorbani
,
H.
, and
Moetakef-Imani
,
B.
,
2016
, “
Specific Cutting Force and Cutting Condition Interaction Modeling for Round Insert Face Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1705
1715
.
You do not currently have access to this content.