Solid-state hot press bonding is an advanced joining process wherein two specimens can be joined under high pressure for a period of time at an elevated temperature. The main step in hot press bonding is the void closure process. In the present study, a three-dimensional theoretical model for describing the void closure process is developed. In the model, the void closure process is divided into two stages: in the first stage, surface asperities are flattened by the time-independent local plastic flow mechanism, and isolated voids form at the bonding interface; in the second stage, the void closure is accomplished by three time-dependent mechanisms, namely, the viscoplastic flow mechanism, surface source diffusion mechanism, and interface source diffusion mechanism. The initial and ending conditions of these mechanisms are proposed. The model also includes an analysis of the effect of macroscopic deformation on void closure. Hot press bonding experiments of Ti–6Al–4V alloy are conducted to validate the model. The modeling predictions show good agreement with the experimental results.

References

1.
Liu
,
X.
,
Chen
,
G.
,
Ni
,
J.
, and
Feng
,
Z.
,
2016
, “
Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051004
.
2.
Yue
,
Y.
,
Li
,
Z.
,
Ji
,
S.
,
Huang
,
Y.
, and
Zhou
,
Z.
,
2016
, “
Effect of Reverse-Threaded Pin on Mechanical Properties of Friction Stir Lap Welded Alclad 2024 Aluminum Alloy
,”
J. Mater. Sci. Technol.
,
32
(
7
), pp.
671
675
.
3.
Ajri
,
A.
, and
Shin
,
Y. C.
,
2017
, “
Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111009
.
4.
Franke
,
D. J.
,
Morrow
,
J. D.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2017
, “
Solid-State Infiltration of 6061-T6 Aluminum Alloy Into Carbon Fibers Via Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111014
.
5.
Hou, Z., Sheikh-Ahmad, J., Jarrar, F., and Ozturk, F., 2018, “
Residual Stresses in Dissimilar Friction Stir Welding of AA2024 and AZ31: Experimental and Numerical Study
,”
ASME J. Manuf. Sci. Eng.
,
140
(5), p. 051015.
6.
Cuellar
,
K. J. Q.
, and
Silveira
,
J. L. L.
,
2017
, “
Analysis of Torque in Friction Stir Welding of Aluminum Alloy 5052 by Inverse Problem Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041017
.
7.
Zhu
,
X. B.
,
Li
,
Y. B.
,
Chen
,
G. L.
, and
Wang
,
P. C.
,
2013
, “
Curing-Induced Distortion Mechanism in Adhesive Bonding of Aluminum AA6061-T6 and Steels
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051007
.
8.
Zhao
,
H.
,
Duan
,
X.
,
Ma
,
M.
,
Lu
,
L.
,
Cai
,
Z.
,
Wang
,
P. C.
, and
Fickes
,
J. D.
,
2010
, “
Dynamic Characteristics of Adhere Bonded High Strength Steel Joints
,”
Sci. Technol. Weld. Joining
,
15
(
6
), pp.
486
490
.
9.
Mazhari
,
E.
, and
Nassar
,
S. A.
,
2017
, “
A Coupled Peel and Shear Stress-Diffusion Model for Adhesively Bonded Single Lap Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091007
.
10.
Zhang
,
C. Q.
,
Robson
,
J. D.
,
Ciuca
,
O.
, and
Prangnell
,
P. B.
,
2014
, “
Microstructural Characterization and Mechanical Properties of High Power Ultrasonic Spot Welded Aluminum Alloy AA6111-TiAl6V4 Dissinliar Joints
,”
Mater. Charact.
,
97
, pp.
83
91
.
11.
Zhang
,
C. Q.
,
Robson
,
J. D.
, and
Prangnell
,
P. B.
,
2016
, “
Dissimilar Ultrasonic Spot Welding of Aerospace Aluminium Alloy AA2139 to Titanium Alloy TiAl6V4
,”
J. Mater. Process. Technol.
,
231
, pp.
382
388
.
12.
Chen
,
K.
,
Liu
,
X.
, and
Ni
,
J.
,
2017
, “
Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081016
.
13.
Lei
,
H. Y.
,
Li
,
Y. B.
,
Carlson
,
B. E.
, and
Lin
,
Z. Q.
,
2016
, “
Microstructure and Mechanical Performance of Cold Metal Transfer Spot Joints of AA6061-T6 to Galvanized DP590 Using Edge Plug Welding Mode
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071009
.
14.
Mazar Atabaki
,
M.
, and
Idris
,
J.
,
2012
, “
Partial Transient Liquid Phase Diffusion Bonding of Zircaloy-4 to Stabilized Austenitic Stainless Steel 321 Using Titanium Interlayer
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
015001
.
15.
Binesh
,
B.
, and
Jazayeri Gharehbagh
,
A.
,
2016
, “
Transient Liquid Phase Bonding of IN738 LC/MBF-15/IN738 LC: Solidification Behavior and Mechanical Properties
,”
J. Mater. Sci. Technol.
,
32
(
11
), pp.
1137
1151
.
16.
Xi
,
L.
,
Banu
,
M.
,
Hu
,
J. S.
,
Cai
,
W.
, and
Abell
,
J.
,
2016
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011008
.
17.
Zhao
,
D.
,
Zhao
,
K.
,
Ren
,
D.
, and
Guo
,
X.
,
2017
, “
Ultrasonic Welding of Magnesium-Titanium Dissimilar Metals: A Study on Influences of Welding Parameters on Mechanical Property by Experimentation and Artificial Neural Network
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031019
.
18.
Zhang
,
C.
,
Li
,
H.
, and
Li
,
M. Q.
,
2015
, “
Formation Mechanisms of High Quality Diffusion Bonded Martensitic Stainless Steel Joints
,”
Sci. Technol. Weld. Joining
,
20
(
2
), pp.
115
122
.
19.
Zhang
,
C.
,
Li
,
M. Q.
, and
Li
,
H.
,
2017
, “
On the Shear Strength of Similar Diffusion Bonded 1Cr11Ni2W2MoV Stainless Steel Hollow Structural Components: Effect of Void Morphology
,”
J. Manuf. Process
,
29
, pp.
10
17
.
20.
Chen
,
S. D.
,
Ke
,
F. J.
,
Zhou
,
M.
, and
Bai
,
Y. L.
,
2007
, “
Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al
,”
Acta Mater
,
55
(
9
), pp.
3169
3175
.
21.
He
,
G.
,
Liu
,
H. H.
,
Tan
,
Q. B.
, and
Ni
,
J. H.
,
2011
, “
Diffusion Bonding of Ti-2.5Al-2.5Mo-2.5Zr and Co-Cr-Mo Alloys
,”
J. Alloys Compd.
,
509
(
27
), pp.
7324
7329
.
22.
Xun
,
Y. W.
, and
Tan
,
M. J.
,
2000
, “
Applications of Superplastic Forming and Diffusion Bonding to Hollow Engine Blades
,”
J. Mater. Process. Technol.
,
99
(1–3), pp. 80–85.
23.
Paul
,
B. K.
,
Kwon
,
P.
, and
Subramanian
,
R.
,
2006
, “
Understanding Limits on Fin Aspect Ratios in Counterflow Microchannel Arrays Produced by Diffusion Bonding
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
977
983
.
24.
Zhang
,
C.
,
Li
,
H.
, and
Li
,
M. Q.
,
2015
, “
Detailed Evolution Mechanism of Interfacial Void Morphology in Diffusion Bonding
,”
J. Mater. Sci. Technol.
,
32
(
3
), pp.
259
264
.http://www.jmst.org/CN/10.1016/j.jmst.2015.12.002
25.
Hill
,
A.
, and
Wallach
,
E. R.
,
1989
, “
Modelling Solid-State Diffusion Bonding
,”
Acta Metall.
,
37
(
9
), pp.
2425
2437
.
26.
Pilling
,
J.
,
Livesey
,
D. W.
,
Hawkyard
,
J. B.
, and
Ridley
,
N.
,
1984
, “
Solid-State Bonding in Superplastic Ti-6Al-4V
,”
Met. Sci.
,
18
(
3
), pp.
117
122
.
27.
Orhan
,
N.
,
Aksoy
,
M.
, and
Eroglu
,
M.
,
1999
, “
A New Model for Diffusion Bonding and Its Application to Duplex Alloys
,”
Mater. Sci. Eng. A
,
271
(
1–2
), pp.
458
468
.
28.
Li
,
H.
,
Liu
,
H. B.
,
Yu
,
W. X.
, and
Li
,
M. Q.
,
2013
, “
Fabrication of High Strength Bond of Ti-17 Alloy Using Press Bonding Under a High Bonding Pressure
,”
Mater. Lett.
,
108
, pp.
212
214
.
29.
Wu
,
H.
,
1999
, “
Influence of Process Variables on Press Bonding of Superplastic 8090 Al-Li Alloy
,”
Mater. Sci. Eng. A
,
264
(
1–2
), pp.
194
200
.
30.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.
31.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. A
,
241
(
1226
), pp.
376
396
.
32.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. A
,
252
(1271), pp. 561–569.
33.
Garmong
,
G.
,
Paton
,
N. E.
, and
Argon
,
A. S.
,
1975
, “
Attainment of Full Interfacial Contact During Diffusion Bonding
,”
Metall. Trans. A
, 6(
6
), pp.
1269
1279
.
34.
Kuczynski
,
G. C.
,
1949
, “
Self-Diffusion in Sintering of Metallic Particles
,”
Trans. Am. I. Min. Met. Eng.
,
185
(2), pp. 169–178.http://www.onemine.org/document/abstract.cfm?docid=20478&title=Institute-of-Metals-Division--Selfdiffusion-in-Sintering-of-Metallic-Particles
35.
Derby
,
B.
, and
Wallach
,
E. R.
,
1982
, “
Theoretical Model for Diffusion Bonding
,”
Met. Sci.
,
16
(
1
), pp.
49
56
.
36.
Hull
,
D.
, and
Rimmer
,
D. E.
,
1959
, “
The Growth of Grain-Boundary Voids Under Stress
,”
Philos. Mag.
,
4
(
42
), pp.
673
687
.
37.
Chen
,
I. W.
, and
Argon
,
A. S.
,
1981
, “
Diffusive Growth of Grain-Boundary Cavities
,”
Acta Mater.
,
29
(
10
), pp.
1759
1768
.
38.
Jonson
,
D. L.
,
1969
, “
New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients From Sintering Data
,”
J. Appl. Phys
,
40
(
1
), pp.
192
200
.
39.
Sargent
,
P. M.
, and
Ashby
,
M. F.
,
1982
, “
Deformation Maps for Titanium and Zirconium
,”
Scr. Mater.
,
16
(
12
), pp.
1415
1422
.
40.
Ma
,
R. F.
,
Li
,
M. Q.
,
Li
,
H.
, and
Yu
,
W. X.
,
2012
, “
Modeling of Void Closure in Diffusion Bonding Process Based on Dynamic Conditions
,”
Sci. China Technol. Sci.
,
55
(
9
), pp.
2420
2431
.
41.
Beer
,
F. R.
, and
Johnson
,
E. R.
,
1981
,
Mechanics of Materials
,
McGraw-Hill
,
New York
.
42.
Luo
,
J.
,
Li
,
M. Q.
,
Li
,
X. L.
, and
Shi
,
Y. P.
,
2010
, “
Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables
,”
Mech. Mater.
,
42
(
2
), pp.
157
165
.
43.
Arieli
,
A.
, and
Rosen
,
A.
,
1977
, “
Superplastic Deformation of Ti-6Al-4V Alloy
,”
Metall. Trans. A
,
8
(
10
), pp.
1591
1595
.
You do not currently have access to this content.