Deformation machining (DM) is a combination of thin structure machining and single-point incremental forming/bending (SPIF/SPIB). This process enables the creation of complex structures and geometries, which are probably difficult or sometimes impossible to manufacture employing conventional manufacturing techniques. Geometrical discrepancies in thin structure or sheet metal bending and forming are a major obstacle in manufacturing quality components. These discrepancies are more prevalent and complex in nature in incremental or generative manufacturing. In the present work, a comprehensive experimental and numerical study on the parametric effects on various geometrical inaccuracies in DM process has been performed. This study would help in giving an insight in providing necessary geometrical compensation, ensuring a quality product over a wide range of process parameters.

References

1.
Samuel
,
M.
,
2000
, “
Experimental and Numerical Prediction of Spring Back and Side Wall Curl in U-Bending of Anisotropic Sheet Metals
,”
J. Mater. Process. Technol.
,
105
(
3
), pp.
382
393
.
2.
Chikalthankar
,
S. B.
,
Belurkar
,
G. D.
, and
Nandedkar
,
V. M.
,
2014
, “
Factors Affecting on Spring Back in Sheet Metal Bending: A Review
,”
Int. J. Eng. Adv. Technol.
,
3
, pp.
247
251
.https://www.researchgate.net/publication/311366088_Factors_affecting_on_springback_in_sheet_metal_bending_A_review
3.
Bambach
,
M.
,
Taleb Araghi
,
B.
, and
Hirt
,
G.
,
2009
, “
Strategies to Improve the Geometric Accuracy in Asymmetric Single Point Incremental Forming
,”
Prod. Eng. Res. Develop.
,
3
(
2
), pp.
145
156
.
4.
Seo
,
D. G.
,
Chang
,
S. H.
, and
Lee
,
S. M.
,
2003
, “
Spring Back Characteristics of Steel Sheets for Warm U-Draw Bending
,”
Met. Mater. Int.
,
9
(
5
), pp.
497
501
.
5.
Echrif
,
S. B. M.
, and
Hrairi
,
M.
,
2011
, “
Research and Progress in Incremental Sheet Forming Processes
,”
Mater. Manuf. Processes
,
26
(
11
), pp.
1404
1414
.
6.
Allwood
,
J. M.
,
Shouler
,
D. R.
, and
Tekkaya
,
A. E.
,
2007
, “
The Increased Forming Limits of Incremental Sheet Forming Processes
,”
Key Eng. Mater.
,
344
, pp.
621
628
.
7.
Duflou
,
J. R.
,
Tunckol
,
Y.
,
Szekeres
,
A.
, and
Vanherck
,
P.
,
2007
, “
Experimental Study on Force Measurements for Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
189
(
1–3
), pp.
65
72
.
8.
Ambrogio
,
G.
,
Costantino
,
I.
,
De Napoli
,
L.
,
Filice
,
L.
,
Fratini
,
L.
, and
Muzzupappa
,
M.
,
2004
, “
Influence of Some Relevant Process Parameters on the Dimensional Accuracy in Incremental Forming: A Numerical and Experimental Investigation
,”
J. Mater. Process. Technol.
,
153–154
, pp.
501
507
.
9.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
Ann. CIRP
,
54
(
2
), pp.
623
650
.
10.
Micari
,
F.
,
Ambrogio
,
G.
, and
Filice
,
L.
,
2007
, “
Shape and Dimensional Accuracy in Single Point Incremental Forming: State of the Art and Future Trends
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
390
395
.
11.
Newell
,
M.
,
Zhang
,
Z.
,
Ren
,
H.
,
Zhang
,
H.
,
Shi
,
Y.
,
Ndip-Agbor
,
E. E.
,
Lu
,
B.
,
Chen
,
J.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2016
, “
Effective Forming Strategy for Double-Sided Incremental Forming Considering In-Plane Curvature and Tool Direction
,”
CIRP Ann.-Manuf. Technol.
,
65
(
1
), pp.
265
268
.
12.
Lingam
,
R.
,
Srivastava
,
A.
, and
Reddy
,
N. V.
,
2016
, “
Deflection Compensations for Tool Path to Enhance Accuracy During Double-Sided Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
091008
.
13.
Malhotra
,
R.
,
Cao
,
J.
,
Ren
,
F.
,
Kiridena
,
V.
,
Xia
,
Z. C.
, and
Reddy
,
N. V.
,
2011
, “
Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061019
.
14.
Zuo
,
Q.
,
He
,
K.
,
Dang
,
X.
,
Feng
,
W.
, and
Du
,
R.
,
2017
, “
A Novel Incremental Sheet Bending Process of Complex Curved Steel Plate
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111005
.
15.
Smith
,
S.
,
Woody
,
B.
,
Ziegert
,
J.
, and
Huang
,
Y.
,
2007
, “
Deformation Machining—A New Hybrid Process
,”
CIRP Ann.-Manuf. Technol.
,
56
(
1
), pp.
281
284
.
16.
Singh
,
A.
, and
Agrawal
,
A.
,
2015
, “
Investigation of Surface Residual Stress Distribution in Deformation Machining Process for Aluminum Alloy
,”
J. Mater. Process. Technol.
,
225
, pp.
195
202
.
17.
Singh
,
A.
, and
Agrawal
,
A.
,
2016
, “
Comparison of Deforming Forces, Residual Stresses and Geometrical Accuracy of Deformation Machining With Conventional Bending and Forming
,”
J. Mater. Process. Technol.
,
234
, pp.
259
271
.
18.
Ambrogio
,
G.
,
De Napoli
,
L.
,
Filice
,
L.
,
Gagliardi
,
F.
, and
Muzzupappa
,
M.
,
2005
, “
Application of Incremental Forming Process for High Customized Medical Product Manufacturing
,”
J. Mater. Process. Technol.
,
162
, pp.
156
162
.
19.
Agrawal
,
A.
,
Smith
,
S.
,
Woody
,
B.
, and
Cao
,
J.
,
2012
, “
Study of Dimensional Repeatability and Fatigue Life for Deformation Machining Bending Mode
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061009
.
20.
Singh
,
A.
, and
Agrawal
,
A.
,
2014
, “
Comparison of Dimensional Repeatability and Accuracy for Deformation Machining Stretching Mode With Sheet Metal Components
,”
Fifth International and 26th All India Manufacturing Technology, Design and Research Conference
, Guwahati, India, Dec. 12--14, Paper No.
306
.https://www.researchgate.net/publication/301325035_Comparison_of_Dimensional_Repeatability_and_Accuracy_for_Deformation_Machining_Stretching_Mode_with_Sheet_Metal_Components
21.
Wang
,
X.
, and
Shi
,
J.
,
2013
, “
Validation of Johnson–Cook Plasticity and Damage Model Using Impact Experiment
,”
Int. J. Impact Eng.
,
60
, pp.
67
75
.
22.
Kruszka
,
L.
,
Anaszewicz
,
L.
,
Janiszewski
,
J.
, and
Grazka
,
M.
,
2012
, “
Experimental and Numerical Analysis of Al6063 Duralumin Using Taylor Impact Test
,”
EPJ Web Conf.
,
26
, p.
01062
.
You do not currently have access to this content.