This paper presents a methodology to compensate the tooltip position errors caused by the geometric errors of a three-axis gantry type micromill integrated with a six degree-of-freedom (6DOF) rotary magnetic table. A geometric error-free ideal forward kinematic model of the nine-axis machine has been developed using homogenous transformation matrices (HTMs). The geometric errors of each linear axis, which include one positioning, two straightness, pitch, roll, and yaw errors, are measured with a laser interferometer and fit to quintic polynomial functions in the working volume of the machine. The forward kinematic model is modified to include the geometric errors which, when subtracted from the ideal kinematic model, gives the deviation between the desired tooltip position with and without geometric errors. The position commands of the six degree-of-freedom rotary magnetic table are modified in real time to compensate for the tooltip deviation using a gradient descent algorithm. The algorithm is simulated and verified experimentally on the nine-axis micromill controlled by an in-house developed virtual/real-time open computer numerical controlled (CNC) system.

References

1.
Zhang
,
G.
,
Veale
,
R.
,
Charlton
,
T.
,
Borchardt
,
B.
, and
Hocken
,
R.
,
1985
, “
Error Compensation of Coordinate Measuring Machines
,”
CIRP Ann.
,
34
(
1
), pp.
445
448
.
2.
Okafor
,
A. C.
, and
Ertekin
,
Y. M.
,
2000
, “
Derivation of Machine Tool Error Models and Error Compensation Procedure for Three Axes Vertical Machining Center Using Rigid Body Kinematics
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1199
1213
.
3.
Shen
,
H.
,
Fu
,
J.
,
He
,
Y.
, and
Yao
,
X.
,
2012
, “
On-Line Asynchronous Compensation Methods for Static/Quasi-Static Error Implemented on CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
60
, pp.
14
26
.
4.
Uddin
,
M. S.
,
Ibaraki
,
S.
,
Matsubara
,
A.
, and
Matsushita
,
T.
,
2009
, “
Prediction and Compensation of Machining Geometric Errors of Five-Axis Machining Centers With Kinematic Errors
,”
Precis. Eng.
,
33
(
2
), pp.
194
201
.
5.
Ma
,
L.
,
Bazzoli
,
P.
,
Sammons
,
P. M.
,
Landers
,
R. G.
, and
Bristow
,
D. A.
,
2016
, “
Modeling and Compensation of Joint-Dependent Kinematic Errors in Robotic Manipulators
,”
International Symposium on Flexible Automation (ISFA)
, Cleveland, OH, Aug. 1–3, pp.
458
464
.
6.
Xiang
,
S.
, and
Altintas
,
Y.
,
2016
, “
Modeling and Compensation of Volumetric Errors for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
65
78
.
7.
Aggarwal
,
S. K.
,
Horsley
,
D. A.
,
Horowitz
,
R.
, and
Pisano
,
A. P.
,
1997
, “
Micro-Actuators for High Density Disk Drives
,”
American Control Conference
, Albuquerque, NM, June 6, pp.
3979
3984
.
8.
Kobayashi
,
M.
, and
Horowitz
,
R.
,
2001
, “
Track Seek Control for Hard Disk Dual-Stage Servo Systems
,”
IEEE Trans. Magn.
,
37
(
2
), pp.
949
954
.
9.
Herrmann
,
G.
,
Turner
,
M. C.
,
Postlethwaite
,
I.
, and
Guo
,
G.
,
2004
, “
Practical Implementation of a Novel Anti-Windup Scheme in a HDD-Dual-Stage Servo-System
,”
IEEE/ASME Trans. Mechatronics
,
9
(
3
), pp.
580
592
.
10.
Zheng
,
J.
, and
Fu
,
M.
,
2008
, “
Nonlinear Feedback Control of a Dual-Stage Actuator System for Reduced Settling Time
,”
IEEE Trans. Control Syst. Technol.
,
16
(
4
), pp.
717
725
.
11.
Elfizy
,
A. T.
,
Bone
,
G. M.
, and
Elbestawi
,
M. A.
,
2005
, “
Design and Control of a Dual-Stage Feed Drive
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
153
165
.
12.
Choi
,
Y. M.
, and
Gweon
,
D. G.
,
2011
, “
A High-Precision Dual-Servo Stage Using Halbach Linear Active Magnetic Bearings
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
925
931
.
13.
Yuen
,
A.
, and
Altintas
,
Y.
,
2017
, “
Constrained Trajectory Generation and Control for a 9-Axis Micromachining Center With Four Redundant Axes
,”
IEEE/ASME Trans. Mechatronics
,
23
(
1
), pp.
402
412
.
14.
Kim
,
O.-S.
,
Lee
,
S.-H.
, and
Han
,
D.-C.
,
2003
, “
Positioning Performance and Straightness Error Compensation of the Magnetic Levitation Stage Supported by the Linear Magnetic Bearing
,”
IEEE Trans. Ind. Electron.
,
50
(
2
), pp.
374
378
.
15.
Deng
,
Y.
,
Jin
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Macro-Micro Compensation Method for Straightness Motion Error and Positioning Error of an Improved Linear Stage
,”
Int. J. Adv. Manuf. Technol.
,
80
(
9–12
), pp.
1799
1806
.
16.
Kono
,
D.
,
Matsubara
,
A.
,
Yamaji
,
I.
, and
Fujita
,
T.
,
2008
, “
High-Precision Machining by Measurement and Compensation of Motion Error
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1103
1110
.
17.
Yu
,
D. P.
,
Hong
,
G. S.
, and
Wong
,
Y. S.
,
2012
, “
Profile Error Compensation in Fast Tool Servo Diamond Turning of Micro-Structured Surfaces
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
13
23
.
18.
Dyck
,
M.
,
Lu
,
X.
, and
Altintas
,
Y.
,
2017
, “
Magnetically Levitated Rotary Table With Six Degrees of Freedom
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
530
540
.
19.
Yuen
,
A.
, and
Altintas
,
Y.
,
2016
, “
Trajectory Generation and Control of a 9 Axis CNC Micromachining Center
,”
CIRP Ann.
,
65
(
1
), pp.
349
352
.
You do not currently have access to this content.