Laser cladding is a rapid physical metallurgy process with a fast heating–cooling cycle, which is used to coat a surface of a metal to enhance the metallurgical properties of the substrate's surface. A fully coupled thermal–metallurgical–mechanical finite element (FE) model was developed to simulate the process of coaxial powder-feed laser cladding for selected overlap conditions and employed to predict the mechanical properties of the clad and substrate materials, as well as distortions and residual stresses. The numerical model is validated by comparing the Vickers microhardness measurements, melt pool dimensions, and heat-affected zone (HAZ) geometry from experimental specimens' cross sectioning. The study was conducted to investigate the temperature field evolution, thermal cycling characteristics, and the effect of deposition directions and overlapping conditions on the microhardness properties of multitrack laser cladding. This study employed P420 stainless steel clad powder on a medium carbon structural steel plate substrate. The study was carried out on three case studies of multitrack bead specimens with 40%, 50%, and 60% overlap. The results provide relevant information for process planning decisions and present a baseline to the downstream process planning optimization.

References

1.
Chew
,
Y.
,
Pang
,
J. H. L.
,
Bi
,
G.
, and
Song
,
B.
,
2015
, “
Thermo-Mechanical Model for Simulating Laser Cladding Induced Residual Stresses With Single and Multiple Clad Beads
,”
J. Mater. Process. Technol.
,
224
, pp.
89
101
.
2.
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2015
, “
Finite Element Simulation of Laser Cladding for Tool Steel Repair
,”
Lasers Based Manufacturing
, (Topics in Mining, Metallurgy and Materials Engineering), Springer, New Delhi, India, pp.
139
156
.
3.
Khanna
,
A. S.
,
Kumari
,
S.
,
Kanungo
,
S.
, and
Gasser
,
A.
,
2009
, “
Hard Coatings Based on Thermal Spray and Laser Cladding
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
485
491
.
4.
Liu
,
Q.
,
Janardhana
,
M.
,
Hinton
,
B.
,
Brandt
,
M.
, and
Sharp
,
K.
,
2011
, “
Laser Cladding as a Potential Repair Technology for Damaged Aircraft Components
,”
Int. J. Struct. Integr.
,
2
(
3
), pp.
314
331
.
5.
Zhong
,
M.
, and
Liu
,
W.
,
2010
, “
Laser Surface Cladding: The State of the Art and Challenges
,”
Proc. Inst. Mech. Eng. Part C
,
224
(
5
), pp.
1041
1060
.
6.
Fallah
,
V.
,
Alimardani
,
M.
,
Corbin
,
S. F.
, and
Khajepour
,
A.
,
2011
, “
Temporal Development of Melt-Pool Morphology and Clad Geometry in Laser Powder Deposition
,”
Comput. Mater. Sci.
,
50
(
7
), pp.
2124
2134
.
7.
Hemmati
,
I.
,
Ocelík
,
V.
, and
De Hosson
,
J. Th. M.
,
2012
, “
Dilution Effects in Laser Cladding of Ni-Cr-B-Si-C Hardfacing Alloys
,”
Mater. Lett.
,
84
, pp.
69
72
.
8.
Zhang
,
Z.
,
Farahmand
,
P.
, and
Kovacevic
,
R.
,
2016
, “
Laser Cladding of 420 Stainless Steel With Molybdenum on Mild Steel A36 by a High Power Direct Diode Laser
,”
Mater. Des.
,
109
, pp.
686
699
.
9.
Suárez
,
A.
,
Amado
,
J. M.
,
Tobar
,
M. J.
,
Yáñez
,
A.
,
Fraga
,
E.
, and
Peel
,
M. J.
,
2010
, “
Study of Residual Stresses Generated Inside Laser Cladded Plates Using FEM and Diffraction of Synchrotron Radiation
,”
Surf. Coat. Technol.
,
204
(12–13), pp.
1983
1988
.
10.
Balu
,
P.
,
Hamid
,
S.
, and
Kovacevic
,
R.
,
2013
, “
Finite Element Modeling of Heat Transfer in Single and Multilayered Deposits of Ni-WC Produced by the Laser-Based Powder Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
68
(1–4), pp.
85
98
.
11.
Cao
,
S.
,
Gu
,
D.
, and
Shi
,
Q.
,
2017
, “
Relation of Microstructure, Microhardness and Underlying Thermodynamics in Molten Pools of Laser Melting Deposition Processed TiC/Inconel 625 Composites
,”
J. Alloys Compd.
,
692
, pp.
758
769
.
12.
Ding
,
L.
,
Li
,
M.
,
Huang
,
D.
, and
Jiang
,
H.
,
2014
, “
Numerical Simulation of Temperature Field and Stress Field to Multiple Laser Cladding Co Coatings
,”
Appl. Mech. Mater.
,
456
, pp.
382
387
.
13.
Farahmand
,
P.
, and
Kovacevic
,
R.
,
2014
, “
An Experimental-Numerical Investigation of Heat Distribution and Stress Field in Single-and Multi-Track Laser Cladding by a High-Power Direct Diode Laser
,”
Opt. Laser Technol.
,
63
, pp.
154
168
.
14.
Liang
,
Z.
,
Xi
,
C.
, and
Bo
,
Z.
,
2014
, “
Numerical Simulation to the Temperature Distribution of the Laser Cladding
,”
Mater. Sci. Forum
,
800–801
, pp.
843
846
.
15.
Nie
,
P.
,
Ojo
,
O. A.
, and
Li
,
Z.
,
2014
, “
Modeling Analysis of Laser Cladding of a Nickel-Based Superalloy
,”
Surf. Coat. Technol.
,
258
, pp.
1048
1059
.
16.
Tang
,
T.
, and
Felicelli
,
S. D.
,
2014
, “
Numerical Analysis of Thermo-Mechanical Behavior of Laser Cladding Process
,”
TMS 143rd Annual Meeting and Exhibition
, San Diego, CA, Feb. 16–20, pp.
1
8
.
17.
Tehrani
,
M. A. A.
,
Rahmati
,
S.
, and
Najafi
,
M.
,
2016
, “
Experimental Investigation of Laser Power Effect on Growth Rate of Intermetallic Compound in Al/Cu Bimetal Produced by Laser Cladding Method
,”
Int. J. Adv. Des. Manuf. Technol.
,
9
(
1
), pp.
35
47
.http://admt.iaumajlesi.ac.ir/index/index.php/me/article/view/1028
18.
Tseng
,
W. C.
, and
Aoh
,
J. N.
,
2013
, “
Simulation Study on Laser Cladding on Preplaced Powder Layer With a Tailored Laser Heat Source
,”
Opt. Laser Technol.
,
48
, pp.
141
152
.
19.
Zhang
,
C. S.
,
Li
,
L.
, and
Deceuster
,
A.
,
2011
, “
Thermomechanical Analysis of Multi-Bead Pulsed Laser Powder Deposition of a Nickel-Based Superalloy
,”
J. Mater. Process. Technol.
,
211
(
9
), pp.
1478
1487
.
20.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2012
, “
Three-Dimensional Finite Element Analysis of Thermal Stress in Single-Pass Multi-Layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
276
285
.
21.
Nazemi
,
N.
, and
Urbanic
,
J.
,
2016
, “
A Finite Element Analysis for Thermal Analysis of Laser Cladding of Mild Steel With P420 Steel Powder
,”
ASME
Paper No. IMECE2016-65654.
22.
Kaplan
,
A. F. H.
, and
Groboth
,
G.
,
2001
, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
609
614
.
23.
Saqib
,
S.
,
2016
, “
Experimental Investigation of Laser Cladding Bead Morphology and Process Parameter Relationship for Additive Manufacturing Process Characterization
,”
Ph.D. dissertation
, University of Windsor, Windsor, ON, Canada.http://scholar.uwindsor.ca/etd/5782/
24.
Ibarra-Medina
,
J.
, and
Pinkerton
,
A. J.
,
2011
, “
Numerical Investigation of Powder Heating in Coaxial Laser Metal Deposition
,”
Surf. Eng.
,
27
(
10
), pp.
754
761
.
25.
Saqib
,
S.
,
Urbanic
,
R. J.
, and
Aggarwal
,
K.
,
2014
, “
Analysis of Laser Cladding Bead Morphology for Developing Additive Manufacturing Travel Paths
,”
Procedia CIRP
,
17
, pp.
824
829
.
26.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J.
,
2007
, “
A 3D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process
,”
Opt. Lasers Eng.
,
45
(
12
), pp.
1115
1130
.
27.
Deng
,
D.
, and
Murakawa
,
H.
,
2008
, “
Finite Element Analysis of Temperature Field, Microstructure and Residual Stress in Multi-Pass Butt-Welded 2.25Cr-1Mo Steel Pipes
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
681
695
.
28.
Dong
,
Z.
, and
Wei
,
Y.
,
2006
, “
Three Dimensional Modeling Weld Solidification Cracks in Multipass Welding
,”
Theor. Appl. Fract. Mech.
,
46
(
2
), pp.
156
165
.
29.
Elcoatea
,
C.
,
Dennisa
,
R.
,
Bouchard
,
P.
, and
Smith
,
M.
,
2005
, “
Three Dimensional Multipass Repair Weld Simulations
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
244
257
.
30.
Lie
,
W.
,
Ma
,
J.
,
Kong
,
F.
,
Liu
,
S.
, and
Kovacevic
,
R.
,
2015
, “
Numerical Modeling and Experimental Verification of Residual Stress in Autogenous Laser Welding of High-Strength Steel
,”
Lasers Manuf. Mater. Process.
,
2
(
1
), pp.
24
42
.
31.
Wang
,
L.
, and
Felicelli
,
S.
,
2007
, “
Process Modeling in Laser Deposition of Multilayer SS410 Steel
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1028
1034
.
32.
Wen
,
S. Y.
,
Shin
,
Y. C.
,
Murthy
,
J. Y.
, and
Sojka
,
P. E.
,
2009
, “
Modeling of Coaxial Powder Flow for the Laser Direct Deposition Process
,”
Int. J. Heat Mass Transfer
,
52
(25–26), pp.
5867
5877
.
33.
ESI-Group
,
2015
, “
SYSWELD 2015 Reference Manual
,” ESI-Group, Paris, France.
34.
Leblond
,
J.
, and
Devaux
,
J.
,
1984
, “
A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including Effect of Austenite Grain Size
,”
Acta Metall.
,
32
(
1
), pp.
137
146
.
35.
Koïstinen
,
D. P.
, and
Marbürger
,
R. E.
,
1959
, “
A General Equation Prescribing Extent of Austenite-Martensite Transformation in Pure Fe-C Alloy and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
.
You do not currently have access to this content.