In this study, the forming limit of aluminum alloy sheet materials is predicted by developing a ductile failure criterion (DFC). In the DFC, the damage growth is defined by Mclintock formula, stretching failure is defined at localized necking (LN) or fracture without LN, while the critical damage is defined by a so-called effect function, which reflects the effect of strain path and initial sheet thickness. In the first part of this study, the DFC is used to predict forming limit curves (FLCs) of six different aluminum sheet materials at room temperature. Then, the DFC is further developed for elevated temperature conditions by introducing an improved Zener–Hollomon parameter (Z), which is proposed to provide enhanced representation of the strain rate and temperature effect on limit strain. In warm forming condition, the improved DFC is used to predict the FLCs of Al5083-O and failure in a rectangular cup warm draw process on Al5182 + Mn. Comparison shows that all the predictions match quite well with the experimental measurements. Thanks to the proposal of effect function, the DFC needs calibration only in uniaxial tension, and thus, provides a promising potential to predict forming limit with reduced effort.

References

1.
Mallick
,
P. K.
, ed.,
2010
,
Materials, Design and Manufacturing for Lightweight Vehicles
, Woodhead Publishing, Cambridge, UK.
2.
Neugebauer
,
R.
,
Altan
,
T.
,
Geiger
,
M.
,
Kleiner
,
M.
, and
Sterzing
,
A.
,
2006
, “
Sheet Metal Forming at Elevated Temperatures
,”
CIRP Ann.-Manuf. Technol.
,
55
(
2
), pp.
793
816
.
3.
Tebbe
,
P. A.
, and
Kridli
,
G. T.
,
2004
, “
Warm Forming of Aluminium Alloys: An Overview and Future Directions
,”
Int. J. Mater. Prod. Technol.
,
21
(
1
), pp.
24
40
.
4.
Ashby
,
M. F.
,
Gandhi
,
C.
, and
Taplin
,
D. M. R.
,
1979
, “
Fracture-Mechanism Maps and Their Construction for FCC Metals and Alloys
,”
Acta Metall.
,
27
(
5
), pp.
699
729
.
5.
Keeler
,
S. P.
, and
Backofen
,
W. A.
,
1963
, “
Plastic Instability and Fracture in Sheet Stretched Over Rigid Punches
,”
ASM Trans. Q.
,
56
(
1
), pp.
25
48
.
6.
Abu-Farha
,
F.
,
2011
, “
The Development of a Forming Limit Surface for 5083 Aluminum Alloy Sheet
,”
JOM
,
63
(
11
), pp.
72
78
.
7.
Naka
,
T.
,
Torikai
,
G.
,
Hino
,
R.
, and
Yoshida
,
F.
,
2001
, “
The Effects of Temperature and Forming Speed on the Forming Limit Diagram for Type 5083 Aluminum-Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
648
653
.
8.
Li
,
D.
, and
Ghosh
,
A. K.
,
2004
, “
Biaxial Warm Forming Behavior of Aluminum Sheet Alloys
,”
J. Mater. Process. Technol.
,
145
(
3
), pp.
281
293
.
9.
Wang
,
K.
,
Carsley
,
J. E.
,
He
,
B.
,
Li
,
J.
, and
Zhang
,
L.
,
2014
, “
Measuring Forming Limit Strains With Digital Image Correlation Analysis
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1120
1130
.
10.
Hsu
,
E.
,
Carsley
,
J. E.
, and
Verma
,
R.
,
2008
, “
Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
17
(
3
), pp.
288
296
.
11.
Abovyan
,
T.
,
Kridli
,
G. T.
,
Friedman
,
P. A.
, and
Ayoub
,
G.
,
2015
, “
Formability Prediction of Aluminum Sheet Alloys Under Isothermal Forming Conditions
,”
J. Manuf. Processes
,
20
(
Part 2
), pp.
406
413
.
12.
Yao
,
H.
, and
Cao
,
J.
,
2002
, “
Prediction of Forming Limit Curves Using an Anisotropic Yield Function With Prestrain Induced Backstress
,”
Int. J. Plast.
,
18
(
8
), pp.
1013
1038
.
13.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
,
2006
, “
Forming of Aluminum Alloys at Elevated Temperatures—Part 1: Material Characterization
,”
Int. J. Plast.
,
22
(
2
), pp.
314
341
.
14.
Bruschi
,
S.
,
Altan
,
T.
,
Banabic
,
D.
,
Bariani
,
P. F.
,
Brosius
,
A.
,
Cao
,
J.
, and
Tekkaya
,
A. E.
,
2014
, “
Testing and Modelling of Material Behavior and Formability in Sheet Metal Forming
,”
CIRP Ann.-Manuf. Technol.
,
63
(
2
), pp.
727
749
.
15.
Hora
,
P.
, and
Tong
,
L.
,
2008
, “
Theoretical Prediction of the Influence of Curvature and Thickness on the FLC by the Enhanced Modified Maximum Force Criterion
,”
NUMISHEET Conference
, Interlaken, Switzerland, Sept. 1–5, pp.
205
210
.
16.
Jain
,
M.
,
Allin
,
J.
, and
Lloyd
,
D. J.
,
1999
, “
Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet
,”
Int. J. Mech. Sci.
,
41
(
10
), pp.
1273
1288
.
17.
Oyane
,
M.
,
1972
, “
Criteria of Ductile Fracture Strain
,”
Bull. JSME
,
15
(
90
), pp.
1507
1513
.
18.
Alexandrov
,
S.
,
Wang
,
P. T.
, and
Roadman
,
R. E.
,
2005
, “
A Fracture Criterion of Aluminum Alloys in Hot Metal Forming
,”
J. Mater. Process. Technol.
,
160
(
2
), pp.
257
265
.
19.
Lin
,
J.
,
Mohamed
,
M.
,
Balint
,
D.
, and
Dean
,
T. A.
,
2014
, “
The Development of Continuum Damage Mechanics-Based Theories for Predicting Forming Limit Diagrams for Hot Stamping Applications
,”
Int. J. Damage Mech.
,
23
(
5
), pp.
684
701
.
20.
Sheng
,
Z. Q.
,
2015
, “
A Ductile Necking Criterion for Sheet Forming Limit
,”
North American Deep Draw Research Group Fall Meeting
, Oakland University, Oakland Center, Auburn Hills, MI, Dec. 10, No. 9.
21.
Sheng
,
Z. Q.
, and
Mallick
,
P. K.
,
2017
, “
A Ductile Failure Criterion for Predicting Sheet Metal Forming Limit
,”
Int. J. Mech. Sci.
,
128–129
(
27
), pp.
345
360
.
22.
Takuda
,
H.
,
Mori
,
K.
,
Takakura
,
N.
, and
Yamaguchi
,
K.
,
2000
, “
Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture
,”
Int. J. Mech. Sci.
,
42
(
4
), pp.
785
798
.
23.
Benzerga
,
A.
, and
Leblond
,
J. B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.
24.
Schmitt
,
J. H.
, and
Jalinier
,
J. M.
,
1982
, “
Damage in Sheet Metal Forming—I. Physical Behavior
,”
Acta Metall.
,
30
(
9
), pp.
1789
1798
.
25.
Tasan
,
C. C.
,
Hoefnagels
,
J. P. M.
,
Ten Horn
,
C. H. L. J.
, and
Geers
,
M. G. D.
,
2009
, “
Experimental Analysis of Strain Path Dependent Ductile Damage Mechanics and Forming Limits
,”
Mech. Mater.
,
41
(
11
), pp.
1264
1276
.
26.
Jalinier
,
J. M.
, and
Schmitt
,
J. H.
,
1982
, “
Damage in Sheet Metal Forming—II. Plastic Instability
,”
Acta Metall.
,
30
(
9
), pp.
1799
1809
.
27.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2015
, “
A Comparative Study of Three Groups of Ductile Fracture Loci in the 3D Space
,”
Eng. Fract. Mech.
,
135
, pp.
147
167
.
28.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
29.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modeling and Numerical Simulation
, Springer-Verlag, Berlin.
30.
Hill
,
R. T.
,
1952
, “
On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
19
30
.
31.
Stören
,
S.
, and
Rice
,
J. R.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
421
441
.
32.
Volk
,
W.
,
Illig
,
R.
,
Kupfer
,
H.
,
Wahlen
,
A.
,
Hora
,
P.
,
Kessler
,
L.
, and
Hotz
,
W.
,
2008
, “
Benchmark 1–Virtual Forming Limit Curves
,”
The Numisheet 2008
, Interlaken, Switzerland, Sept. 1–5, pp. 3–10.
33.
Graf
,
A.
, and
Hosford
,
W.
,
1993
, “
Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4
,”
Metall. Mater. Trans. A
,
24
(
11
), pp.
2503
2512
.
34.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
35.
Sheng
,
Z. Q.
, and
Shivpuri
,
R.
,
2006
, “
A Hybrid Process for Forming Thin-Walled Magnesium Parts
,”
Mater. Sci. Eng.: A
,
428
(
1–2
), pp.
180
187
.
36.
Sheng
,
Z. Q.
,
2012
, “
A Temperature and Time Dependent Forming Limit Surface for Sheet Metal Forming at Elevated Temperatures
,”
SAE
Paper No. 2012-01-0016.
37.
Kim
,
H. K.
, and
Kim
,
W. J.
,
2010
, “
Failure Prediction of Magnesium Alloy Sheets Deforming at Warm Temperatures Using the Zener-Holloman Parameter
,”
Mech. Mater.
,
42
(
3
), pp.
293
303
.
38.
Sheng
,
Z. Q.
,
2017
, “
An Improved Zener-Hollomon Parameter and a New Ductile Failure Criterion for Modeling and Predicting Sheet Metal Forming Limit
,”
Ph.D. dissertation
, University of Michigan, Dearborn, MI.
39.
Li
,
D.
, and
Ghosh
,
A.
,
2003
, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,”
Mater. Sci. Eng.: A
,
352
(
1
), pp.
279
286
.
40.
Kim
,
H. S.
,
Koc
,
M.
,
Ni
,
J.
, and
Ghosh
,
A.
,
2006
, “
Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
613
621
.
41.
Tang
,
S. C.
, and
Pan
,
J.
,
2007
,
Mechanics Modeling of Sheet Metal Forming
,
SAE International
, Warrendale, PA.
42.
Tari
,
D. G.
, and
Worswick
,
M. J.
,
2015
, “
Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B
,”
J. Mater. Process. Technol.
,
221
, pp.
40
55
.
43.
Sheng
,
Z. Q.
, and
Shivpuri
,
R.
,
2006
, “
Modeling Flow Stress of Magnesium Alloys at Elevated Temperature
,”
Mater. Sci. Eng.: A
,
419
(
1
), pp.
202
208
.
44.
Yoshida
,
K.
,
Kuwabara
,
T.
, and
Kuroda
,
M.
,
2007
, “
Path-Dependence of the Forming Limit Stresses in a Sheet Metal
,”
Int. J. Plast.
,
23
(
3
), pp.
361
384
.
45.
Zeng
,
D.
,
Chappuis
,
L.
,
Xia
,
Z. C.
, and
Zhu
,
X.
,
2009
, “
A Path Independent Forming Limit Criterion for Sheet Metal Forming Simulations
,”
SAE
Paper No. 2008-01-1445.
46.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2012
, “
Path Independent Forming Limits in Strain and Stress Spaces
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3616
3625
.
You do not currently have access to this content.