This paper presents new techniques to analyze and understand the sensorimotor characteristics of manual operations such as grinding, and links their influence on process performance. A grinding task, though simple, requires the practitioner to combine elements from the large repertoire of his or her skillset. Based on the joint gaze, force, and velocity data collected from a series of manual grinding experiments, we have compared operators with different levels of experience and quantitatively described characteristics of human manual skill and their effects on manufacturing process parameters such as cutting energy, surface finish, and material removal rate (MRR). For instance, we find that an experienced subject performs the task in a precise manner by moving the tool in complex paths, with lower applied forces and velocities, and short fixations compared to a novice. A detailed understanding of gaze-motor behavior broadens our knowledge of how a manual task is executed. Our results help to provide this extra insight, and impact future efforts in workforce training as well as the digitalization of manual expertise, thereby facilitating the transformation of raw data into product-specific knowledge.

References

1.
Goldstein
,
E.
,
2014
,
Cognitive Psychology: Connecting Mind, Research and Everyday Experience
,
Cengage Learning
, Boston, MA.
2.
Wojtara
,
T.
,
Uchihara
,
M.
,
Murayama
,
H.
,
Shingo
,
S.
,
Sakai
,
S.
,
Fujimoto
,
H.
, and
Kimura
,
H.
,
2009
, “
Human–Robot Collaboration in Precise Positioning of a Three-Dimensional Object
,”
Automatica
,
45
(
2
), pp.
333
342
.
3.
Francalanza
,
E.
,
Borg
,
J.
, and
Constantinescu
,
C.
,
2017
, “
Development and Evaluation of a Knowledge-Based Decision-Making Approach for Designing Changeable Manufacturing Systems
,”
CIRP J. Manuf. Sci. Technol.
,
16
, pp.
81
101
.
4.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
5.
Wang
,
L.
,
Törngren
,
M.
, and
Onori
,
M.
,
2015
, “
Current Status and Advancement of Cyber-Physical Systems in Manufacturing
,”
J. Manuf. Syst.
,
37
(Part 2), pp.
517
527
.
6.
Das
,
J.
, and
Linke
,
B.
,
2016
, “
Effect of Manual Grinding Operations on Surface Integrity
,”
Procedia CIRP
,
45
, pp.
95
98
.
7.
Khellouki
,
A.
,
Rech
,
J.
, and
Zahouani
,
H.
,
2007
, “
The Effect of Abrasive Grain's Wear and Contact Conditions on Surface Texture in Belt Finishing
,”
Wear
,
263
(
1–6
), pp.
81
87
.
8.
Mezghani
,
S.
, and
El Mansori
,
M.
,
2008
, “
Abrasiveness Properties Assessment of Coated Abrasives for Precision Belt Grinding
,”
Surf. Coat. Technol.
,
203
(
5–7
), pp.
786
789
.
9.
Odum
,
K.
,
Castillo
,
M. C.
,
Das
,
J.
, and
Linke
,
B.
,
2014
, “
Sustainability Analysis of Grinding With Power Tools
,”
Proc. CIRP
,
14
, pp.
570
574
.
10.
Das
,
J.
, and
Linke
,
B.
,
2017
, “
Evaluation and Systematic Selection of Significant Multi-Scale Surface Roughness Parameters (SRPs) as Process Monitoring Index
,”
J. Mater. Process. Technol., Procedia Manuf.
,
244
, pp.
157
165
.
11.
Erez
,
T.
,
Tramper
,
J. J.
,
Smart
,
W. D.
, and
Gielen
,
S. C. A. M.
,
2011
, “
A POMDP Model of Eye-Hand Coordination
,”
Twenty-Fifth AAAI Conference on Artificial Intelligence
, San Francisco, CA, Aug. 7–11, pp. 952–957.https://pdfs.semanticscholar.org/d1c7/fb4de8c2f7e74aae96db10ddd2b1045af15a.pdf
12.
Land
,
M. F.
,
2009
, “
Vision, Eye Movements, and Natural Behavior
,”
Visual Neurosci.
,
26
(
1
), pp.
51
62
.
13.
Yi
,
W.
, and
Ballard
,
D.
,
2009
, “
Recognizing Behavior in Hand-Eye Coordination Patterns
,”
Int. J. Hum. Rob.
,
6
(
3
), pp.
337
359
.
14.
Sprague
,
N.
,
Ballard
,
D.
, and
Robinson
,
A.
,
2007
, “
Modeling Embodied Visual Behaviors
,”
ACM Trans. Appl. Percept. (TAP)
,
4
(
2
), p.
11
.
15.
Kong
,
Z.
, and
Mettler
,
B.
, “
Modeling Human Guidance Behavior Based on Patterns in Agent–Environment Interactions
,”
IEEE Trans. Hum.-Mach. Syst.
,
43
(
4
), pp.
371
384
.
16.
Mettler
,
B.
,
Kong
,
Z.
,
Li
,
B.
, and
Andersh
,
J.
,
2014
, “
Systems View on Spatial Planning and Perception Based on Invariants in Agent-Environment Dynamics
,”
Front. Neurosci.
,
8
, p.
439
.
17.
Bales
,
G.
,
Das
,
J.
,
Linke
,
B.
, and
Kong
,
Z.
,
2016
, “
Recognizing Gaze-Motor Behavioral Patterns in Manual Grinding Tasks
,”
Procedia Manuf.
,
5
, pp.
106
121
.
18.
Lukander
,
K.
,
2003
, “
Mobile Usability-Measuring Gaze Point on Handheld Devices
,”
M.S. thesis
, Department of Automation and Systems Technology, Helsinki University of Technology, Espoo, Finland.https://www.semanticscholar.org/paper/Mobile-Usability-measuring-Gaze-Point-on-Handheld-Lukander-Nieminen/0323766878e4610ed804e9919730dff450de97ea
19.
Cristino
,
F.
,
Mathôt
,
S.
,
Theeuwes
,
J.
, and
Gilchrist
,
I. D.
,
2010
, “
Scanmatch: A Novel Method for Comparing Fixation Sequences
,”
Behav. Res. Methods
,
42
(
3
), pp.
692
700
.
20.
Duchowski
,
A.
,
2007
,
Eye Tracking Methodology: Theory and Practice
, Vol.
373
, Springer-Verlag, London.
21.
Duchowski
,
A. T.
,
Driver
,
J.
,
Jolaoso
,
S.
,
Tan
,
W.
,
Ramey
,
B. N.
, and
Robbins
,
A.
,
2010
, “
Scanpath Comparison Revisited
,”
Symposium on Eye-Tracking Research and Applications
(
ETRA
), Austin, TX, Mar. 22–24, pp.
219
226
.
22.
Holmqvist
,
K.
,
Nyström
,
M.
,
Andersson
,
R.
,
Dewhurst
,
R.
,
Jarodzka
,
H.
, and
Van de Weijer
,
J.
,
2011, Eye Tracking: A Comprehensive Guide to Methods and Measures
,
Oxford University Press
,
Oxford, UK
.
23.
Noton
,
D.
, and
Stark
,
L.
,
1971
, “
Scanpaths in Saccadic Eye Movements While Viewing and Recognizing Patterns
,”
Vision Res.
,
11
(
9
), pp.
929
942
.
24.
Salvucci
,
D. D.
, and
Goldberg
,
J. H.
,
2000
, “
Identifying Fixations and Saccades in Eye-Tracking Protocols
,”
Symposium on Eye Tracking Research and Applications
(
ETRA
), Palm Beach Gardens, FL, Nov. 6–8, pp.
71
78
.
25.
Nyström
,
M.
, and
Holmqvist
,
K.
,
2010
, “
An Adaptive Algorithm for Fixation, Saccade, and Glissade Detection in Eyetracking Data
,”
Behav. Res. Methods
,
42
(
1
), pp.
188
204
.
You do not currently have access to this content.