Machinery condition monitoring and fault diagnosis are essential for early detection of equipment malfunctions or failures, which insure productivity, quality, and safety in the manufacturing process. This paper aims at extracting fault features of rolling element bearings at the incipient fault stage. K-singular value decomposition (K-SVD), one technique for sparse representation of signals, is used for study. In K-SVD, its dictionary is trained from data by machine learning techniques, which allows more flexibility to adapt to variation of real signals than the predefined dictionaries. Analysis on simulated bearing signals and real signals shows that K-SVD can give better bearing fault features than the predefined dictionaries such as wavelet dictionaries. However, during our simulation study, K-SVD was found to have large representation error under heavy noise. To reduce the noise effect, minimum entropy deconvolution (MED) is used as a prefilter. The combination of MED and K-SVD is proposed for incipient bearing fault detection. The method is verified by simulation and experimental study. It is shown that the proposed method can effectively extract the impulsive fault feature of the tested bearing at its incipient fault stage.

References

1.
Ho
,
D.
, and
Randall
,
R.
,
2000
, “
Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals
,”
Mech. Syst. Signal Process.
,
14
(
5
), pp.
763
788
.
2.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
.
3.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterising Non-Stationary Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
282
307
.
4.
Randall
,
R. B.
,
Antoni
,
J.
, and
Chobsaard
,
S.
,
2001
, “
The Relationship Between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
945
962
.
5.
Cocconcelli
,
M.
,
Zimroz
,
R.
,
Rubini
,
R.
, and
Bartelmus
,
W.
,
2012
, “
STFT Based Approach for Ball Bearing Fault Detection in a Varying Speed Motor
,”
Condition Monitoring of Machinery in Non-Stationary Operations
, Springer, Berlin, pp.
41
50
.
6.
Lou
,
X. S.
, and
Loparo
,
K. A.
,
2004
, “
Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference
,”
Mech. Syst. Signal Process.
,
18
(
5
), pp.
1077
1095
.
7.
Peng
,
Z. K.
, and
Chu
,
F. L.
,
2004
, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
199
221
.
8.
Feng
,
Y. H.
, and
Schlindwein
,
F. S.
,
2009
, “
Normalized Wavelet Packets Quantifiers for Condition Monitoring
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
712
723
.
9.
Baydar
,
N.
, and
Ball
,
A.
,
2001
, “
A Comparative Study of Acoustic and Vibration Signals in Detection of Gear Failures Using Wigner-Ville Distribution
,”
Mech. Syst. Signal Process.
,
15
(
6
), pp.
1091
1107
.
10.
Yu
,
D. J.
,
Cheng
,
J. S.
, and
Yang
,
Y.
,
2005
, “
Application of EMD Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
259
270
.
11.
Li
,
H.
,
Zhang
,
Y. P.
, and
Zheng
,
H. Q.
,
2009
, “
Hilbert-Huang Transform and Marginal Spectrum for Detection and Diagnosis of Localized Defects in Roller Bearings
,”
J. Mech. Sci. Technol.
,
23
(
2
), pp.
291
301
.
12.
Olshausen
,
B. A.
,
1996
, “
Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images
,”
Nature
,
381
(
6583
), pp.
607
609
.
13.
Rubinstein
,
R.
,
Bruckstein
,
A. M.
, and
Elad
,
M.
,
2010
, “
Dictionaries for Sparse Representation Modeling
,”
Proc. IEEE
,
98
(
6
), pp.
1045
1057
.
14.
Liu
,
B.
,
Ling
,
S. F.
, and
Gribonval
,
R.
,
2002
, “
Bearing Failure Detection Using Matching Pursuit
,”
NDT&E Int.
,
35
(
4
), pp.
255
262
.
15.
Yang
,
H. Y.
,
Mathew
,
J.
, and
Ma
,
L.
,
2005
, “
Fault Diagnosis of Rolling Element Bearings Using Basis Pursuit
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
341
356
.
16.
Feng
,
Z. P.
, and
Chu
,
F. L.
,
2007
, “
Application of Atomic Decomposition to Gear Damage Detection
,”
J. Sound Vib.
,
302
(1–2), pp.
138
151
.
17.
Cui
,
L.
,
Wang
,
J.
, and
Lee
,
S.
,
2014
, “
Matching Pursuit of an Adaptive Impulse Dictionary for Bearing Fault Diagnosis
,”
J. Sound Vib.
,
333
(
10
), pp.
2840
2862
.
18.
Tosic
,
I.
, and
Frossard
,
P.
,
2011
, “
Dictionary Learning
,”
IEEE Signal Process. Mag.
,
28
(
2
), pp.
27
38
.
19.
Olshausen
,
B. A.
, and
Field
,
D. J.
,
1997
, “
Sparse Coding With an Overcomplete Basis Set: A Strategy Employed by V1?
,”
Vision Res.
,
37
(
23
), pp.
3311
3325
.
20.
Kreutz-Delgado
,
K.
,
Murray
,
J. F.
,
Rao
,
B. D.
,
Engan
,
K.
,
Lee
,
T. W.
, and
Sejnowski
,
T. J.
,
2003
, “
Dictionary Learning Algorithms for Sparse Representation
,”
Neural Comput.
,
15
(
2
), pp.
349
396
.
21.
Engan
,
K.
,
Aase
,
S. O.
, and
Husoy
,
J. H.
,
1999
, “
Method of Optimal Directions for Frame Design
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP
), Phoenix, AZ, Mar. 15–19, pp.
2443
2446
.
22.
Aharon
,
M.
,
Elad
,
M.
, and
Bruckstein
,
A.
,
2006
, “
K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
,”
IEEE Trans. Signal Process.
,
54
(
11
), pp.
4311
4322
.
23.
Blumensath
,
T.
, and
Davies
,
M.
,
2006
, “
Sparse and Shift-Invariant Representations of Music
,”
IEEE Trans. Audio Speech Lang. Process.
,
14
(
1
), pp.
50
57
.
24.
Liu
,
H. N.
,
Liu
,
C. L.
, and
Huang
,
Y. X.
,
2011
, “
Adaptive Feature Extraction Using Sparse Coding for Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
558
574
.
25.
Tang
,
H. F.
,
Chen
,
J.
, and
Dong
,
G. M.
,
2014
, “
Sparse Representation Based Latent Components Analysis for Machinery Weak Fault Detection
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
373
388
.
26.
Zhou
,
H. T.
,
Chen
,
J.
,
Dong
,
G. M.
, and
Wang
,
R.
,
2016
, “
Detection and Diagnosis of Bearing Faults Using Shift-Invariant Dictionary Learning and Hidden Markov Model
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
65
79
.
27.
Zhu
,
K. P.
, and
Vogel-Heuser
,
B.
,
2014
, “
Sparse Representation and Its Applications in Micro-Milling Condition Monitoring: Noise Separation and Tool Condition Monitoring
,”
Int. J. Adv. Manuf. Technol.
,
70
(1–4), pp.
185
199
.
28.
Chen
,
X.
,
Du
,
Z.
,
Li
,
J.
,
Li
,
X.
, and
Zhang
,
H.
,
2014
, “
Compressed Sensing Based on Dictionary Learning for Extracting Impulse Components
,”
Signal Process.
,
96
(
Part A
), pp.
94
109
.
29.
Feng
,
Z. P.
, and
Liang
,
M.
,
2016
, “
Complex Signal Analysis for Planetary Gearbox Fault Diagnosis Via Shift Invariant Dictionary Learning
,”
Measurement
,
90
, pp.
382
395
.
30.
Elad
,
M.
, and
Aharon
,
M.
,
2006
, “
Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries
,”
IEEE Trans. Image Process.
,
15
(
12
), pp.
3736
3745
.
31.
Wiggins
,
R. A.
,
1978
, “
Minimum Entropy Deconvolution
,”
Geoexploration
,
16
(1–2), pp.
21
35
.
32.
Endo
,
H.
, and
Randall
,
R. B.
,
2007
, “
Enhancement of Autoregressive Model Based Gear Tooth Fault Detection Technique by the Use of Minimum Entropy Deconvolution Filter
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
906
919
.
33.
Sawalhi
,
N.
,
Randall
,
R. B.
, and
Endo
,
H.
,
2007
, “
The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined With Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2616
2633
.
34.
Jiang
,
R.
,
Chen
,
J.
,
Dong
,
G.
,
Liu
,
T.
, and
Xiao
,
W.
,
2013
, “
The Weak Fault Diagnosis and Condition Monitoring of Rolling Element Bearing Using Minimum Entropy Deconvolution and Envelope Spectrum
,”
Proc. Inst. Mech. Eng., Part C
,
227
(5), pp.
1116
1129
.
35.
Aharon
,
M.
,
2006
, “
Overcomplete Dictionaries for Sparse Representation of Signals
,”
Ph.D. thesis
, Technion-Israel Institute of Technology, Faculty of Computer Science, Haifa, Israel.http://www.cs.technion.ac.il/~michalo/MichalAharonPhDThesis.pdf
36.
Mallat
,
S. G.
, and
Zhang
,
Z.
,
1993
, “
Matching Pursuits With Time-Frequency Dictionaries
,”
IEEE Trans. Signal Process.
,
41
(
12
), pp.
3397
3415
.
37.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation With Applications to Wavelet Decomposition
,”
IEEE Asilomar Conference on Signals, Systems and Computers
(
ACSSC
), Pacific Grove, CA, Nov. 1–3, pp.
40
44
.
38.
Chen
,
S. S. B.
,
Donoho
,
D. L.
, and
Saunders
,
M. A.
,
1998
, “
Atomic Decomposition by Basis Pursuit
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
33
61
.
39.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
40.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
The Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
41.
Antoni
,
J.
, and
Randall
,
R. B.
,
2002
, “
Differential Diagnosis of Gear and Bearing Faults
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
165
171
.
42.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions
,”
J. Sound Vib.
,
304
(3–5), pp.
497
529
.
43.
Pan
,
Y. N.
,
Chen
,
J.
, and
Li
,
X. L.
,
2009
, “
Spectral Entropy: A Complementary Index for Rolling Element Bearing Performance Degradation Assessment
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
5
), pp.
1223
1231
.
You do not currently have access to this content.