Fixture layout can affect deformation and dimensional variation of sheet metal assemblies. Conventionally, the assembly dimensions are simulated with a quantity of finite element (FE) analyses, and fixture layout optimization needs significant user intervention and unaffordable iterations of finite element analyses. This paper therefore proposes a fully automated and efficient method of fixture layout optimization based on the combination of 3dcs simulation (for dimensional analyses) and global optimization algorithms. In this paper, two global algorithms are proposed to optimize fixture locator points, which are social radiation algorithm (SRA) and GAOT, a genetic algorithm (GA) in optimization toolbox in matlab. The flowchart of fixture design includes the following steps: (1) The locating points, the key elements of a fixture layout, are selected from a much smaller candidate pool thanks to our proposed manufacturing constraints based filtering methods and thus the computational efficiency is greatly improved. (2) The two global optimization algorithms are edited to be used to optimize fixture schemes based on matlab. (3) Since matlab macrocommands of 3dcs have been developed to calculate assembly dimensions, the optimization process is fully automated. A case study of inner hood is applied to demonstrate the proposed method. The results show that the GAOT algorithm is more suitable than SRA for generating the optimal fixture layout with excellent efficiency for engineering applications.

References

1.
Xie
,
L. S.
, and
Hsieh
,
C. C.
,
2002
, “
Clamping and Welding Sequence Optimization for Minimizing Cycle Time and Assembly Deformation
,”
Int. J. Mater. Prod. Technol.
,
17
(
5–6
), pp.
389
399
.
2.
Nguyen
,
V.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
3
16
.
3.
Ball
,
R. S.
,
1990
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
4.
Asada
,
H.
, and
Kitagawa
,
M.
,
1989
, “
Kinematical Analysis and Planning for Form Closure Grasps by Robotics Hand
,”
Rob. Comput.-Integr. Manuf.
,
5
(
4
), pp.
293
299
.
5.
Wang
,
M. Y.
,
2000
, “
An Optimum Design for 3-D Fixture Synthesis in a Point Set Domain
,”
Rob. Autom.
,
16
(
6
), pp.
839
846
.
6.
Qin
,
G. H.
,
Zhang
,
W.
,
Wu
,
Z.
, and
Wan
,
M.
,
2007
, “
Systematic Modeling of Workpiece-Fixture Geometric Default and Compliance for the Prediction of Workpiece Machining Error
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
789
801
.
7.
Lööf
,
J.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions
,”
ASME
Paper No. DETC2009-86598.
8.
Tsao
,
C.-C.
,
2013
, “
Dual-Dexterous-Vises: Preliminary Design and Tests of a Flexible Fixturing System
,”
Int. J. Precis. Eng. Manuf.
,
14
(
8
), pp.
1407
1414
.
9.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
.
10.
Choi
,
W. Y.
, and
Chung
,
H.
,
2015
, “
Variation Simulation of Compliant Metal Plate Assemblies Considering Welding Distortion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031008
.
11.
Ni
,
J.
,
Tang
,
W. C.
,
Xing
,
Y.
,
Ben
,
K. C.
, and
Li
,
M.
,
2015
, “
A Local-to-Global Dimensional Error Calculation Framework for the Riveted Assembly Using Finite-Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031004
.
12.
Kuang
,
H.
,
Hu
,
S. J.
, and
Ko
,
J.
,
2016
, “
Concurrent Design of Assembly Plans and Supply Chain Configurations Using AND/OR Graphs and Dynamic Programing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051011
.
13.
Mehmet
,
A. I.
, and
Tuna
,
T. G.
,
2016
, “
Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101012
.
14.
Zhang
,
T. Y.
, and
Shi
,
J. J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
15.
Zhang
,
T. Y.
, and
Shi
,
J. J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
16.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Impact of Fixture Design on Sheet Metal Assembly Variation
,”
J. Manuf. Syst.
,
23
(
3
), pp.
182
193
.
17.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
,
2003
, “
Robust Fixture Configuration Design for Sheet Metal Assembly With Laser Welding
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
120
127
.
18.
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2001
, “
Quadratic Sensitivity Analysis of Fixtures and Locating Schemes for Rigid Parts
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
462
472
.
19.
Vishnupriyan
,
S.
,
Majumder
,
M. C.
, and
Ramachandran
,
K. P.
,
2010
, “
Optimization of Machining Fixture Layout for Tolerance Requirements Under the Influence of Locating Errors
,”
Int. J. Eng. Sci. Technol.
,
2
(
1
), pp.
152
162
.
20.
Xing
,
Y. F.
, and
Wang
,
Y. S.
,
2013
, “
Fixture Layout Design Based on Two-Stage Method for Sheet Metal Components
,”
J. Eng. Manuf.
,
227
(
1
), pp.
677
682
.
21.
Dou
,
J. P.
,
Wang
,
X. S.
, and
Wang
,
L.
,
2010
, “
Machining Fixture Layout Optimization Using Particle Swarm Optimization Algorithm
,”
Fourth International Seminar on Modern Cutting and Measurement Engineering
, Beijing, China, Dec. 10–12, Paper No. 79970S.
22.
Chryssolouris
,
G.
,
Papakostas
,
N.
, and
Mourtzis
,
D.
,
2000
, “
A Decision Making Approach for Nesting Scheduling: A Textile Case
,”
Int. J. Prod. Res.
,
38
(
17
), pp.
4555
4564
.
23.
Das
,
A.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2015
, “
Fixture Design Optimisation Considering Production Batch of Compliant Non-Ideal Sheet Metal Parts
,”
Proc. Manuf.
,
1
(3), pp.
157
168
.
24.
Xing
,
Y. F.
,
Ni
,
J.
, and
Lan
,
S. H.
,
2014
, “
Fixture Layout Optimization Based on Social Radiation Algorithm
,”
ASME
Paper No. MSEC2014-4098.
25.
Houck
,
C. R.
,
Joines
,
J. A.
, and
Kay
,
M. G.
,
1995
, “
A Genetic Algorithm for Function Optimization: A MATLAB Implementation
,” North Carolina State University, Raleigh, NC, Technical Report No.
NCSU-IE-TR-95-09
.https://www.researchgate.net/publication/2386612_A_Genetic_Algorithm_for_Function_Optimization_A_MATLAB_implementation
26.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assembly Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
You do not currently have access to this content.