In resistance spot welding (RSW), data inconsistency is a well-known issue. Such inconsistent data are usually treated as noise and removed from the original dataset before conducting analyses or constructing prediction models. This may not be desirable for all design and manufacturing applications since data that are often considered noise can contain important information in determining weldment design, and proper welding conditions. In this paper, we present the Meta2 prediction framework to provide cost-effective opportunities for proper welding material and condition selection from the noisy RSW quality data. The Meta2 framework employs bootstrap aggregating with support vector regression (SVR) to improve the prediction accuracy on the noisy RSW data with computational efficiency. Hyper-parameters for SVR are selected by particle swarm optimization (PSO) with meta-modeling to reduce the computational cost. Experiments on three artificially generated noisy datasets and a real RSW dataset indicate that Meta2 is capable of providing satisfactory solutions with a noticeably reduced computational cost. The authors find Meta2 promising as a potential prediction model algorithm for this type of noisy data.

References

1.
Rao
,
P. K.
,
Liu
,
J. P.
,
Roberson
,
D.
,
Kong
,
Z. J.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
2.
Tapoglou
,
N.
,
Mehnen
,
J.
,
Vlachou
,
A.
,
Doukas
,
M.
,
Milas
,
N.
, and
Mourtzis
,
D.
,
2015
, “
Cloud-Based Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real-Time Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040909
.
3.
Shaban
,
Y.
,
Yacout
,
S.
, and
Balazinski
,
M.
,
2015
, “
Tool Wear Monitoring and Alarm System Based on Pattern Recognition With Logical Analysis of Data
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041004
.
4.
Jiang
,
Z.
,
Yin
,
Y.
,
Wang
,
Q.
, and
Chen
,
X.
,
2016
, “
Predictive Modeling of Grinding Force Considering Wheel Deformation for Toric Fewer-Axis Grinding of Large Complex Optical Mirrors
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061008
.
5.
Gu
,
L.
, and
Zheng
,
T.
,
2016
, “
Study on the Generalized Holo-Factors Mathematical Model of Dimension-Error and Shape-Error for Sheet Metal in Stamping Based on the Back Propagation (BP) Neural Network
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
064502
.
6.
Chandola
,
V.
,
Banerjee
,
A.
, and
Kumar
,
V.
,
2009
, “
Anomaly Detection: A Survey
,”
ACM Comput. Surv.
,
41
(
1
), p.
15
.
7.
Olvera-López
,
J. A.
,
Carrasco-Ochoa
,
J. A.
,
Martínez-Trinidad
,
J. F.
, and
Kittler
,
J.
,
2010
, “
A Review of Instance Selection Methods
,”
Artif. Intell. Rev.
,
34
(
2
), pp.
133
143
.
8.
Kim
,
I.-S.
,
Jeong
,
Y.
,
Lee
,
C.
, and
Yarlagadda
,
P.
,
2003
, “
Prediction of Welding Parameters for Pipeline Welding Using an Intelligent System
,”
Int. J. Adv. Manuf. Technol.
,
22
(
10
), pp.
713
719
.
9.
Xu
,
G.
,
Wen
,
J.
,
Wang
,
C.
, and
Zhang
,
X.
,
2009
, “
Quality Monitoring for Resistance Spot Welding Using Dynamic Signals
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Changchun, China, Aug. 9–12, pp.
2495
2499
.
10.
Wang
,
S.-J.
,
Mathew
,
A.
,
Chen
,
Y.
,
Xi
,
L.-F.
,
Ma
,
L.
, and
Lee
,
J.
,
2009
, “
Empirical Analysis of Support Vector Machine Ensemble Classifiers
,”
Expert Syst. Appl.
,
36
(
3
), pp.
6466
6476
.
11.
Kim
,
M.-J.
, and
Kang
,
D.-K.
,
2012
, “
Classifiers Selection in Ensembles Using Genetic Algorithms for Bankruptcy Prediction
,”
Expert Syst. Appl.
,
39
(
10
), pp.
9308
9314
.
12.
Chen
,
S.
,
Wang
,
W.
, and
Van Zuylen
,
H.
,
2009
, “
Construct Support Vector Machine Ensemble to Detect Traffic Incident
,”
Expert Syst. Appl.
,
36
(
8
), pp.
10976
10986
.
13.
Wu
,
C.-H.
,
Tzeng
,
G.-H.
, and
Lin
,
R.-H.
,
2009
, “
A Novel Hybrid Genetic Algorithm for Kernel Function and Parameter Optimization in Support Vector Regression
,”
Expert Syst. Appl.
,
36
(
3
), pp.
4725
4735
.
14.
Lins
,
D.
,
Moura
,
M. D. C.
,
Zio
,
E.
, and
Droguett
,
E. L.
,
2012
, “
A Particle Swarm-Optimized Support Vector Machine for Reliability Prediction
,”
Qual. Reliab. Eng. Int.
,
28
(
2
), pp.
141
158
.
15.
Zhou
,
H.
,
Pei Zhao
,
J.
,
Gang Zheng
,
L.
,
Lin Wang
,
C.
, and
Fa Cen
,
K.
,
2012
, “
Modeling NOx Emissions From Coal-Fired Utility Boilers Using Support Vector Regression With Ant Colony Optimization
,”
Eng. Appl. Artif. Intell.
,
25
(
1
), pp.
147
158
.
16.
Gheyas
,
A.
, and
Smith
,
L. S.
,
2010
, “
Feature Subset Selection in Large Dimensionality Domains
,”
Pattern Recognit.
,
43
(
1
), pp.
5
13
.
17.
Chatterjee
,
A.
,
Pulasinghe
,
K.
,
Watanabe
,
K.
, and
Izumi
,
K.
,
2005
, “
A Particle-Swarm-Optimized Fuzzy-Neural Network for Voice-Controlled Robot Systems
,”
IEEE Trans. Ind. Electron.
,
52
(
6
), pp.
1478
1489
.
18.
Guo
,
X.
,
Yang
,
J.
,
Wu
,
C.
,
Wang
,
C.
, and
Liang
,
Y.
,
2008
, “
A Novel LS-SVMs Hyper-Parameter Selection Based on Particle Swarm Optimization
,”
Neurocomputing
,
71
(
16
), pp.
3211
3215
.
19.
Escalante
,
H. J.
,
Montes
,
M.
, and
Sucar
,
L. E.
,
2009
, “
Particle Swarm Model Selection
,”
J. Mach. Learn. Res.
,
10
, pp.
405
440
.http://www.jmlr.org/papers/v10/escalante09a.html
20.
Lin
,
S.-W.
,
Ying
,
K.-C.
,
Chen
,
S.-C.
, and
Lee
,
Z.-J.
,
2008
, “
Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines
,”
Expert Syst. Appl.
,
35
(
4
), pp.
1817
1824
.
21.
Kapp
,
M. N.
,
Sabourin
,
R.
, and
Maupin
,
P.
,
2009
, “
A PSO-Based Framework for Dynamic SVM Model Selection
,”
11th ACM Annual Conference on Genetic and Evolutionary Computation
(
GECCO
), Montreal, QC, Canada, July 8–12, pp.
1227
1234
.https://pdfs.semanticscholar.org/61f6/e58a1dda974ad0247abd1312ae1a95b19630.pdf
22.
Park
,
J.
, and
Kim
,
K.-Y.
,
2017
, “
Meta-Modeling With Generalized Regression Neural Network and Particle Swarm Optimization
,”
Appl. Soft Comput.
,
51
, pp.
354
369
.
23.
Kusiak
,
A.
, and
Salustri
,
F.
,
2007
, “
Computational Intelligence in Product Design Engineering: Review and Trends
,”
IEEE Trans. Syst. Man Cybernetics, Part C
,
37
(
5
), pp.
766
778
.
24.
Venugopal
,
V.
, and
Narendran
,
T.
,
1992
, “
Neural Network Model for Design Retrieval in Manufacturing Systems
,”
Comput. Ind.
,
20
(
1
), pp.
11
23
.
25.
Park
,
J.-H.
, and
Seo
,
K.-K.
,
2006
, “
A Knowledge-Based Approximate Life Cycle Assessment System for Evaluating Environmental Impacts of Product Design Alternatives in a Collaborative Design Environment
,”
Adv. Eng. Inf.
,
20
(
2
), pp.
147
154
.
26.
Sousa
,
I.
, and
Wallace
,
D.
,
2006
, “
Product Classification to Support Approximate Life-Cycle Assessment of Design Concepts
,”
Technol. Forecasting Social Change
,
73
(
3
), pp.
228
249
.
27.
Shieh
,
M. D.
, and
Yang
,
C.-C.
,
2008
, “
Classification Model for Product Form Design Using Fuzzy Support Vector Machines
,”
Comput. Ind. Eng.
,
55
(
1
), pp.
150
164
.
28.
Yang
,
C.-C.
,
2011
, “
Constructing a Hybrid Kansei Engineering System Based on Multiple Affective Responses: Application to Product Form Design
,”
Comput. Ind. Eng.
,
60
(
4
), pp.
760
768
.
29.
Tang
,
Y.
, and
Chen
,
J.
,
2009
, “
Robust Design of Sheet Metal Forming Process Based on Adaptive Importance Sampling
,”
Struct. Multidiscip. Optim.
,
39
(
5
), pp.
531
544
.
30.
Pan
,
F.
,
Zhu
,
P.
, and
Zhang
,
Y.
,
2010
, “
Metamodel-Based Lightweight Design of B-Pillar With TWB Structure Via Support Vector Regression
,”
Comput. Struct.
,
88
(
1
), pp.
36
44
.
31.
Fuge
,
M.
,
Peters
,
B.
, and
Agogino
,
A.
,
2014
, “
Machine Learning Algorithms for Recommending Design Methods
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101103
.
32.
Xu
,
H.
,
Liu
,
R.
,
Choudhary
,
A.
, and
Chen
,
W.
,
2015
, “
A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051403
.
33.
Dietterich
,
T. G.
,
2000
, “
An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
,”
Mach. Learn.
,
40
(
2
), pp.
139
157
.
34.
Opitz
,
D.
, and
Maclin
,
R.
,
1999
, “
Popular Ensemble Methods: An Empirical Study
,”
J. Artif. Intell. Res.
,
11
, pp.
169
198
.
35.
Melville
,
P.
,
Shah
,
N.
,
Mihalkova
,
L.
, and
Mooney
,
R. J.
,
2004
, “
Experiments on Ensembles With Missing and Noisy Data
,”
International Workshop on Multiple Classifier Systems
, Cagliari, Italy, June 9–11, pp.
293
302
.
36.
Khoshgoftaar
,
T. M.
,
Van Hulse
,
J.
, and
Napolitano
,
A.
,
2011
, “
Comparing Boosting and Bagging Techniques With Noisy and Imbalanced Data
,”
IEEE Trans. Syst. Man Cybernetics
, Part A,
41
(
3
), pp.
552
568
.
37.
Kim
,
H.-C.
,
Pang
,
S.
,
Je
,
H.-M.
,
Kim
,
D.
, and
Bang
,
S.-Y.
,
2002
, “
Support Vector Machine Ensemble With Bagging
,”
Pattern. Recognit. Support. Vector. Mach.
, pp.
397
408
.
38.
Kim
,
H.-C.
,
Pang
,
S.
,
Je
,
H.-M.
,
Kim
,
D.
, and
Yang Bang
,
S.
,
2003
, “
Constructing Support Vector Machine Ensemble
,”
Pattern Recognit.
,
36
(
12
), pp.
2757
2767
.
39.
Valentini
,
G.
, and
Dietterich
,
T. G.
,
2003
, “
Low Bias Bagged Support Vector Machines
,” International Conference on Machine Learning (
ICML
), Atlanta, GA, June 16–21, pp.
752
759
.http://web.engr.oregonstate.edu/~tgd/publications/ml2003-lobag.pdf
40.
Valentini
,
G.
,
2005
, “
An Experimental Bias-Variance Analysis of SVM Ensembles Based on Resampling Techniques
,”
IEEE Trans. Syst. Man Cybernetics, Part B
,
35
(
6
), pp.
1252
1271
.
41.
Pal
,
M.
,
2008
, “
Ensemble of Support Vector Machines for Land Cover Classification
,”
Int. J. Remote Sens.
,
29
(
10
), pp.
3043
3049
.
42.
Park
,
J.
,
Kim
,
K.-Y.
, and
Sohmshetty
,
R.
,
2015
, “
A Prediction Modeling Framework: Toward Integration of Noisy Manufacturing Data and Product Design
,”
ASME
Paper No. DETC2015-46236.
43.
Park
,
J.
,
Kim
,
K.-Y.
, and
Sohmshetty
,
R.
,
2014
, “
Towards Proper-Inconsistency in Weldability Prediction Using k-Nearest Neighbor Regression and Generalized Regression Neural Network With Mean Acceptable Error
,”
24th International Conference on Flexible Automation and Intelligent Manufacturing
(
FAIM
), San Antonio, TX, May 20–23, pp. 395–401.
44.
Kim
,
K.-Y.
,
Park
,
J.
, and
Sohmshetty
,
R.
,
2017
, “
Prediction Measurement With Mean Acceptable Error for Proper Inconsistency in Noisy Weldability Prediction Data
,”
Rob. Comput.-Integr. Manuf.
,
43
, pp.
18
29
.
45.
Vapnik
,
V. N.
,
1995
,
The Nature of Statistical Learning Theory
,
Spring-Verlag
,
New York
.
46.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
47.
Polikar
,
R.
,
2012
, “
Ensemble Learning
,”
Ensemble Machine Learning
, Springer, New York, pp.
1
34
.
48.
Chen
,
K.-Y.
,
2007
, “
Forecasting Systems Reliability Based on Support Vector Regression With Genetic Algorithms
,”
Reliab. Eng. Syst. Saf.
,
92
(
4
), pp.
423
432
.
49.
Fan
,
R.-E.
,
Chen
,
P.-H.
, and
Lin
,
C.-J.
,
2005
, “
Working Set Selection Using Second Order Information for Training Support Vector Machines
,”
J. Mach. Learn. Res.
,
6
, pp.
1889
1918
.http://www.jmlr.org/papers/v6/fan05a.html
50.
Moser
,
G.
, and
Serpico
,
S. B.
,
2009
, “
Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data
,”
IEEE Trans. Geosci. Remote Sens.
,
47
(
3
), pp.
909
921
.
51.
Kavaklioglu
,
K.
,
2011
, “
Modeling and Prediction of Turkey's Electricity Consumption Using Support Vector Regression
,”
Appl. Energy
,
88
(
1
), pp.
368
375
.
52.
Chang
,
C.-C.
, and
Lin
,
C.-J.
,
2011
, “
LIBSVM: A Library for Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), p.
27
.
53.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on Evolutionary Computation Proceedings
(
ICEC
), Anchorage, AK, May 4–9, pp.
69
73
.
54.
Nickabadi
,
A.
,
Ebadzadeh
,
M. M.
, and
Safabakhsh
,
R.
,
2011
, “
A Novel Particle Swarm Optimization Algorithm With Adaptive Inertia Weight
,”
Appl. Soft Comput.
,
11
(
4
), pp.
3658
3670
.
55.
Park
,
J.
, and
Kim
,
K.-Y.
,
2016
, “
Instance Variant Nearest Neighbor Using Particle Swarm Optimization for Function Approximation
,”
Appl. Soft Comput.
,
40
, pp.
331
341
.
You do not currently have access to this content.