Feedrate optimization for computer numerically controlled (CNC) machine tools is a challenging task that is growing in importance as manufacturing industry demands faster machine tools. The majority of research in this area focusses on optimizing feedrate using modeled process constraints. Some researchers have suggested using measured process parameters instead. The former approach suffers from uncertainties in the modeled process data that is the starting point of the optimization. The latter approach has difficulties achieving high levels of optimality. This study proposes the combination of both modeled and measured process data. To this end, a control architecture is described that allows combining measured and modeled process constraints. Within this architecture, a new algorithm to determine time optimum feedrates using modeled velocity and acceleration constraints is proposed. The new control structure including the novel feedrate optimization algorithm is verified experimentally on a high speed biaxial table.

References

1.
Emami
,
M. M.
, and
Arezoo
,
B.
,
2010
, “
A Look-Ahead Command Generator With Control Over Trajectory and Chord Error for NURBS Curve With Unknown Arc Length
,”
Comput.-Aided Des.
,
42
(
7
), pp.
625
632
.
2.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
044501
.
3.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design—Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
4.
Dong
,
J.
, and
Stori
,
J. A.
,
2007
, “
Optimal Feed-Rate Scheduling for High-Speed Contouring
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
63
76
.
5.
Mayor
,
J. R.
, and
Sodemann
,
A. A.
,
2008
, “
Intelligent Tool-Path Segmentation for Improved Stability and Reduced Machining Time in Micromilling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031121
.
6.
Jin
,
Y. A.
,
He
,
Y.
,
Fu
,
J. Z.
,
Lin
,
Z. W.
, and
Gan
,
W. F.
,
2014
, “
A Fine-Interpolation-Based Parametric Interpolation Method With a Novel Real-Time Look-Ahead Algorithm
,”
Comput.-Aided Des.
,
55
, pp.
37
48
.
7.
Yang
,
Z.
,
Shen
,
L. Y.
,
Yuan
,
C. M.
, and
Gao
,
X. S.
,
2015
, “
Curve Fitting and Optimal Interpolation for CNC Machining Under Confined Error Using Quadratic B-Splines
,”
Comput.-Aided Des.
,
66
, pp.
62
72
.
8.
Timar
,
S. D.
,
Farouki
,
R. T.
, and
Boyadjieff
,
C. L.
,
2007
, “
Time Optimal Feedrate Along Curved Paths for Cartesian Machines With Prescribed Bounds on Velocities and Accelerations
,”
Int. J. Rob. Autom.
,
22
(
2
), pp.
112
125
.
9.
Timar
,
S. D.
, and
Farouki
,
R. T.
,
2007
, “
Time-Optimal Traversal of Curved Paths by Cartesian CNC Machines Under Both Constant and Speed-Dependent Axis Acceleration Bounds
,”
Rob. Comput.-Integr. Manuf.
,
23
(
5
), pp.
563
579
.
10.
Renton
,
D.
, and
Elbestawi
,
M. A.
,
2000
, “
High Speed Servo Control of Multiaxis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
539
559
.
11.
Dong
,
J.
, and
Stori
,
J. A.
,
2006
, “
A Generalized Time-Optimal Bidirectional Scan Algorithm for Constrained Feed-Rate Optimization
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
2
), pp.
379
390
.
12.
Farouki
,
R.
,
Manjunathaiah
,
J.
,
Nicholas
,
D.
,
Yuan
,
G. F.
, and
Jee
,
S.
,
1998
, “
Variable-Feedrate CNC Interpolators for Constant Material Removal Rates Along Pythagorean-Hodograph Curves
,”
Comput.-Aided Des.
,
30
(
8
), pp.
631
640
.
13.
Sun
,
Y.
,
Jia
,
Z.
,
Ren
,
F.
, and
Guo
,
D.
,
2008
, “
Adaptive Feedrate Scheduling for NC Machining Along Curvilinear Paths With Improved Kinematic and Geometric Properties
,”
Int. J. Adv. Manuf. Technol.
,
36
(
1–2
), pp.
60
68
.
14.
Feng
,
J.
,
Li
,
Y.
,
Wang
,
Y.
, and
Chen
,
M.
,
2010
, “
Design of a Real-Time Adaptive NURBS Interpolator With Axis Acceleration Limit
,”
Int. J. Adv. Manuf. Technol.
,
48
(
1–4
), pp.
227
241
.
15.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2005
, “
Quintic Spline Interpolation With Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
339
349
.
16.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part ii: Precision Contour Controller Design
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031006
.
17.
Zarifmansour
,
S.
, and
Seethaler
,
R. J.
,
2015
, “
Considering Machining Tolerances in High Speed Corner Tracking
,”
ASME
Paper No. DETC2015-46047.
18.
Seethaler
,
R. J.
, and
Yellowley
,
I.
,
1996
, “
The Regulation of Position Error in Contouring Systems
,”
Int. J. Mach. Tools Manuf.
,
36
(
6
), pp.
713
728
.
19.
Yang
,
L.
, and
Yellowley
,
I.
,
2001
, “
High-Speed Contouring Using a Novel Dynamic Interpolation Mechanism
,”
Int. J. Mach. Tools Manuf.
,
41
(
6
), pp.
773
794
.
20.
Ardekani
,
R.
, and
Yellowley
,
I.
,
1996
, “
The Control of Multiple Constraints Within an Open Architecture Machine Tool Controller
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
388
393
.
21.
Seethaler
,
R. J.
, and
Yellowley
,
I.
,
2000
, “
Process Control and Dynamic Process Planning
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
239
257
.
22.
Ridwan
,
F.
, and
Xu
,
X.
,
2013
, “
Advanced CNC System With In-Process Feed-Rate Optimisation
,”
Rob. Comput.-Integr. Manuf.
,
29
(
3
), pp.
12
20
.
23.
Zuperl
,
U.
, and
Cus
,
F.
,
2003
, “
Optimization of Cutting Conditions During Cutting by Using Neural Networks
,”
Rob. Comput.-Integr. Manuf.
,
19
(
1
), pp.
189
199
.
24.
Rauch
,
M.
,
Duc
,
E.
, and
Hascoet
,
J. Y.
,
2009
, “
Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
375
383
.
25.
Rahaman
,
M.
,
Seethaler
,
R.
, and
Yellowley
,
I.
,
2015
, “
A New Approach to Contour Error Control in High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
42
50
.
26.
Budak
,
E.
, and
Kops
,
L.
,
2000
, “
Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control
,”
CIRP Ann.-Manuf. Technol.
,
49
(
1
), pp.
31
36
.
27.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
,
2005
, “
State-Of-The-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
693
710
.
28.
Wiercigroch
,
M.
, and
Budak
,
E.
,
2001
, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
663
693
.
29.
Oldknow
,
K. D.
, and
Yellowley
,
I.
,
2005
, “
FPGA-Based Servo Control and Three-Dimensional Dynamic Interpolation
,”
IEEE/ASME Trans. Mechatronics
,
1
(
10
), pp.
98
110
.
30.
Wang
,
B.
,
Liu
,
Z.
,
Su
,
G.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials With Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
31.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X.
,
Yang
,
J. G.
,
Chiang
,
K. N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
32.
Davis
,
T. A.
,
Shin
,
Y. C.
, and
Yao
,
B.
,
2015
, “
Adaptive Robust Control of Circular Machining Contour Error Using Global Task Coordinate Frame
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014501
.
33.
Hynynen
,
K. M.
,
Ratava
,
J.
,
Lindh
,
T.
,
Rikkonen
,
M.
,
Ryynänen
,
V.
,
Lohtander
,
M.
, and
Varis
,
J.
,
2014
, “
Chatter Detection in Turning Processes Using Coherence of Acceleration and Audio Signals
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044503
.
34.
Zhang
,
Q.
, and
Li
,
S. R.
,
2013
, “
Efficient Computation of Smooth Minimum Time Trajectory for CNC Machining
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
683
692
.
You do not currently have access to this content.