This study examines the possibility of applying lasers for the formation of laser-affected bands in hardenable steel sheets, with a specific focus on how the formation of these hardened bands can improve the accuracy of the single point incremental forming process (SPIF). For this purpose, the process parameters for the hardening process have been chosen using finite-element (FE) modeling. The results of the modeling have been validated by temperature field measurements obtained from IR camera observations. The microstructural analysis of the laser-affected zones has been performed using optical microscopy (OM) and scanning electron microscopy (SEM). These investigations confirm a phase transformation to a martensitic structure during laser scanning, and microhardness (HV0·1) results show a hardness increase by a factor of about three in the laser-affected region in comparison to that of the base metal (BM). Finally, using a laser assisted single point incremental forming (LASPIF) setup, hardened bands have been generated for preprocessing and intermediate processing during the different phases of a SPIF procedure. Geometric accuracy studies show that appropriate use of hard martensitic bands can increase the process accuracy through significantly reduction of an unwanted sheet deformation, and has the potential to eliminate the need for a backing plate.

References

1.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann.—Manuf. Technol.
,
54
(
2
), pp.
88
114
.
2.
Radu
,
C.
,
Tampu
,
C.
,
Cristea
,
I.
, and
Chirita
,
B.
,
2013
, “
The Effect of Residual Stresses on the Accuracy of Parts Processed by SPIF
,”
J. Mater. Manuf. Processes
,
28
(
5
), pp.
572
576
.
3.
Mohammadi
,
A.
,
Vanhove
,
H.
,
Van Bael
,
A.
, and
Duflou
,
J.
,
2013
, “
On the Geometric Accuracy in Shallow Sloped Parts in Single Point Incremental Forming
,”
Key Eng. Mater.
,
554–557
, pp.
1443
1450
.
4.
Ambrogio
,
G.
,
Cozza
,
V.
,
Filice
,
L.
, and
Micari
,
F.
,
2007
, “
An Analytical Model for Improving Precision in Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
92
95
.
5.
Hussain
,
G.
,
Lin
,
G.
, and
Hayat
,
N.
,
2011
, “
Improving Profile Accuracy in SPIF Process Through Statistical Optimization of Forming Parameters
,”
J. Mech. Sci. Technol.
,
25
(
1
), pp.
177
182
.
6.
Verbert
,
J.
,
Duflou
,
J.
, and
Lauwers
,
B.
,
2007
, “
Feature Based Approach for Increasing the Accuracy of the SPIF Process
,”
Key Eng. Mater.
,
344
, pp.
527
534
.
7.
Meier
,
H.
,
Smukala
,
V.
,
Dewald
,
O.
, and
Zhang
,
J.
,
2007
, “
Two Point Incremental Forming With Two Moving Forming Tools
,”
Key Eng. Mater.
,
344
, pp.
599
605
.
8.
Zhang
,
Z.
,
Ren
,
H.
,
Xu
,
R.
,
Moser
,
N.
,
Smith
,
J.
,
Ndip-Agbor
,
E.
,
Malhotra
,
R.
,
Cedric Xia
,
Z.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2015
, “
A Mixed Double-Sided Incremental Forming Toolpath Strategy for Improved Geometric Accuracy
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051007
.
9.
Malhotra
,
R.
,
Cao
,
J.
,
Beltran
,
M.
,
Xu
,
D.
,
Magargee
,
J.
,
Kiridena
,
V.
, and
Xia
,
Z. C.
,
2012
, “
Accumulative-DSIF Strategy for Enhancing Process Capabilities in Incremental Forming
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
251
254
.
10.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2007
, “
Laser Assisted Incremental Forming: Formability and Accuracy Improvement
,”
CIRP Ann.—Manuf. Technol.
,
56
(
1
), pp.
273
276
.
11.
Kim
,
S. W.
,
Lee
,
Y. S.
,
Kang
,
S. H.
, and
Lee
,
J. H.
,
2007
, “
Incremental Forming of Mg Alloy Sheet at Elevated Temperatures
,”
J. Mech. Sci. Technol.
,
21
(
10
), pp.
1518
1522
.
12.
Palumbo
,
G.
, and
Brandizzi
,
M.
,
2012
, “
Experimental Investigations on the Single Point Incremental Forming of a Titanium Alloy Component Combining Static Heating With High Tool Rotation Speed
,”
J. Mater. Des.
,
40
, pp.
43
51
.
13.
Göttmann
,
A.
,
Diettrich
,
J.
,
Bergweiler
,
G.
,
Bambach
,
M.
,
Hirt
,
G.
,
Loosen
,
P.
, and
Poprawe
,
R.
,
2011
, “
Laser-Assisted Asymmetric Incremental Sheet Forming of Titanium Sheet Metal Parts
,”
Prod. Eng. Res. Dev.
,
5
(
3
), pp.
263
271
.
14.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
,
2015
, “
A Parametric Study on Laser Welding of Magnesium Alloy AZ31 by a Fiber Laser
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041003
.
15.
Farrokhi
,
F.
,
Siltanen
,
J.
, and
Salminen
,
A.
,
2015
, “
Fiber Laser Welding of Direct-Quenched Ultrahigh Strength Steels: Evaluation of Hardness, Tensile Strength, and Toughness Properties at Subzero Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061012
.
16.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
17.
Kongsuwan
,
P.
,
Brandal
,
G.
, and
Lawrence Yao
,
Y.
,
2015
, “
Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031004
.
18.
Honeycombe
,
R. W.
, and
Bhadeshia
,
H. K.
,
1995
,
Steels: Microstructure and Properties
, 2nd ed.,
Arnold
,
London, UK
.
19.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2008
, “
Improved SPIF Performance Through Dynamic Local Heating
,”
Int. J. Mach. Tool Manuf.
,
48
(
5
), pp.
543
549
.
20.
Bradley
,
J. R.
, and
Kim
,
S.
,
1989
, “
Laser Transformation Hardening of a High-Purity Iron-Carbon-Chromium Alloy
,”
Scr. Mater.
,
23
(
1
), pp.
131
136
.
21.
Kou
,
S.
, and
Sun
,
D. K.
,
1983
, “
Heat Flow During the Laser Transformation Hardening of Cylindrical Bodies
,”
Metall. Mater. Trans. A
,
14
(
9
), pp.
1859
1867
.
22.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1990
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
23.
Selvan
,
J. S.
,
Subramanian
,
K.
, and
Nath
,
A. K.
,
1999
, “
Effect of Laser Surface Hardening on En18 (AISI 5135) Steel
,”
J. Mater. Process. Technol.
,
91
(
1–3
), pp.
29
36
.
24.
Vander Voort
,
G. F.
,
1991
,
Atlas of Time-Temperature Diagrams for Irons and Steels
,
ASM International
,
Materials Park, OH
.
25.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
26.
Obergfell
,
K.
,
Schulze
,
V.
, and
Vöhringer
,
O.
,
2003
, “
Classification of Microstructural Changes in Laser Hardened Steel Surfaces
,”
Mater. Sci. Eng.: A
,
355
(
1–2
), pp.
348
356
.
You do not currently have access to this content.