The recently developed direct-quenched ultrahigh strength steels (UHSS) possess an appropriate combination of high tensile strength and toughness properties at subzero temperatures down to −80 °C, while simultaneously having low carbon contents, which is beneficial for weldability. In this study, butt joints of Optim 960 QC direct-quenched UHSS with a thickness of 8 mm were welded with a 10 kW fiber laser to evaluate the characteristics of the joints within the range of low to high heat inputs possible for this welding process. The mechanical properties of the joints were studied by subjecting the specimens to a number of destructive tests, namely, hardness and tensile testing, as well as impact toughness testing at temperatures of −40 °C and −60 °C. It was found that high quality butt joints with superior tensile strength and good impact toughness properties at −40 °C could be obtained. However, having a high level of all these properties in the joint narrows the process parameters’ window, and the heat input needs to be strictly controlled.

References

1.
Horii
,
Y.
,
Ohkita
,
S.
,
Shinada
,
K.
, and
Koyama
,
K.
,
1995
, “
Development of High-Performance Welding Technology for Steel Plates and Pipe for Structural Purposes
,” Nippon Steel, Report No. 65.
2.
Hemmilä
,
M.
,
Hirvi
,
A.
,
Kömi
,
J.
,
Laitinen
,
M.
,
Mikkonen
,
P.
,
Porter
,
D.
,
Savola
,
J.
, and
Tihinen
,
S.
,
2010
,
Technological Properties of Direct-Quenched Structural Steels With Yield Strength 900-960 MPa as Cut Length and Hollow Sections
,
Rautaruukki Corporation
, Helsinki, Finland.
3.
Quentino
,
L.
,
Costa
,
A.
,
Miranda
,
R.
,
Yapp
,
D.
,
Kumar
,
V.
, and
Kong
,
C. J.
,
2007
, “
Welding With High Power Fiber Lasers: A Preliminary Study
,”
Mater. Des.
,
28
(
4
), pp.
1231
1237
.
4.
Ion
,
J.
,
2005
,
Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
5.
Canning
,
J.
,
2006
, “
Fibre Lasers and Related Technologies
,”
Opt. Lasers Eng.
,
44
(
7
), pp.
647
676
.
6.
Salminen
,
A.
,
Lehtinen
,
J.
, and
Harkko
,
P.
,
2008
, “
The Effect of Welding Parameters on Keyhole and Melt Pool Behavior During Laser Welding With High Power Fiber Laser
,”
27th International Conference on Applications of Lasers and Electro Optics ICALEO2008
,
Temecula, CA
, pp.
354
363
.
7.
Shi
,
S.
, and
Westgate
,
S.
,
2008
, “
Laser Welding of Ultra High Strength Steels for Automotive Applications
,”
PICALO 2008
,
Beijing
.
8.
Kaplan
,
A. F. H.
,
Westin
,
E. M.
,
Wiklund
,
G.
, and
Norman
,
P.
,
2008
, “
Imaging in Cooperation With Modeling of Selected Defect Mechanisms During Fiber Laser Welding of Stainless Steel
,”
ICALEO
,
Temecula, CA
, pp.
789
798
.
9.
Kawahito
,
Y.
,
Kinoshita
,
K.
,
Matsumoto
,
N.
,
Mizutani
,
M.
, and
Katayama
,
S.
,
2008
, “
Effect of Weakly Ionised Plasma on Penetration of Stainless Steel Weld Produced With Ultra High Power Density Fiber Laser
,”
Sci. Technol. Weld. Joining
,
13
(
8
), pp.
749
753
.
10.
Duley
,
W. W.
,
1999
,
Laser Welding
,
Wiley
,
New York
.
11.
Yilbas
,
B. S.
, and
Akhtar
,
S.
,
2013
, “
Laser Welding of AISI 316 Steel: Microstructural and Stress Analysis
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031018
.
12.
Losz
,
J.
, and
Challenger
,
K.
,
1999
, “
HAZ Microstructures in HSLA Steel Weldments
,”
First United States-Japan Symposium on Advances in Welding Metallurgy
,
Yokohama, Japan
, pp.
207
225
.
13.
Zeman
,
M.
,
2009
, “
Assessment of Weldability of WELDOX 1100 High-Strength Quenched and Tempered Steel
,”
Weld. Int.
,
23
(
2
), pp.
73
82
.
14.
Xia
,
M.
,
Biro
,
E.
,
Tian
,
Z.
, and
Zhou
,
Y.
,
2008
, “
Effect of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels
,”
ISIJ Int. J.
,
48
(
6
), pp.
809
814
.
15.
Mohandas
,
T.
,
Madhusudan Reddy
,
G.
, and
Satish Kumar
,
B.
,
1999
, “
Heat Affected Zone Softening in High Strength Low Alloy Steels
,”
J. Mater. Process. Technol.
,
88
(
1
), pp.
284
294
.
16.
Farabi
,
N.
,
Chen
,
D.
, and
Zhou
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of Laser Welded Dissimilar DP600/DP980 Dual-Phase Steel Joints
,”
J. Alloys Compd.
,
509
(
3
), pp.
982
989
.
17.
Xia
,
M.
,
Sreenivasan
,
N.
,
Lawson
,
S.
,
Zhou
,
Y.
, and
Tian
,
Z.
,
2007
, “
A Comparative Study of Formability of Diode Laser Welded in DP980 and HSLA Steels
,”
ASME J. Eng. Mater. Technol.
,
129
(
3
), pp.
446
452
.
18.
Farabi
,
N.
,
Chen
,
D.
, and
Zhou
,
Y.
,
2010
, “
Fatigue Properties of Laser Welded Dual-Phase Steel Joints
,”
Procedia Eng.
,
2
(
1
), pp.
835
843
.
19.
Biro
,
E.
,
McDermid
,
J.
,
Embury
,
J.
, and
Zhou
,
Y.
,
2010
, “
Softening Kinetics in the Subcritical Heat-Affected Zone of Dual-Phase Steel Welds
,”
Metall. Mater. Trans. A
,
41
(
9
), pp.
2348
2356
.
20.
Baltazar Hernandez
,
V.
,
Nayak
,
S.
, and
Zhou
,
Y.
,
2011
, “
Tempering of Martensite in Dual Phase Steels and Its Effects on Softening Behavior
,”
Metall. Mater. Trans. A
,
42
(
10
), pp.
3115
3129
.
21.
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S.
,
Chen
,
D.
,
Goodwin
,
F.
, and
Zhou
,
Y.
,
2012
, “
Tensile and Fatigue Properties of Fiber Laser Welded High Strength Low Alloy and DP980 Dual-Phase Steel Joints
,”
Mater. Des.
,
43
, pp.
373
383
.
22.
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S.
,
Chen
,
D.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2012
, “
Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel
,”
Mater. Sci. Eng. A
,
553
, pp.
51
58
.
23.
Kim
,
C.-H.
,
Choi
,
J.-K.
,
Kang
,
M.-J.
, and
Park
,
Y.-D.
,
2010
, “
A Study on the CO2 Laser Welding Characteristics of High Strength Steel up to 1500 MPa for Automotive Application
,”
J. Achiev. Mater. Manuf. Eng.
,
39
(
1
), pp.
79
86
.
24.
Sreenivasan
,
N.
,
Xia
,
M.
,
Lawson
,
S.
, and
Zhou
,
Y.
,
2008
, “
Effect of Laser Welding on Formability of DP980 Steel
,”
ASME J. Eng. Mater. Technol.
,
130
(
4
), p.
041004
.
25.
Leiviskä
,
P.
,
Fellman
,
A.
,
Laitinen
,
R.
, and
Vänskä
,
M.
,
2007
, “
Strength Properties of Laser and Laser Hybrid Welds of Low Alloyed High Strength Steels
,”
11th Conference Nordic Laser Materials Processing
,
Lappeenranta, Finland
, pp.
173
184
.
26.
Laitinen
,
R.
,
Kömi
,
J.
,
Keskitalo
,
M.
, and
Mäkikangas
,
J.
,
2007
, “
Improvement of the Strength of Welded Joints in Ultra High Strength Optim 960 QC Using Autogenous Yb:YAG Laser Welding
,”
Nordic Laser Materials Processing, NOLAMP 11
,
Lappeenranta, Finland
, pp.
204
215
.
27.
Siltanen
,
J.
, and
Tihinen
,
S.
,
2012
, “
Position Welding of 960 MPa Ultra-High-Strength-Steel
,”
ICALEO
,
Anaheim, CA
, pp.
464
473
.
28.
Zeman
,
M.
,
2009
, “
Properties of Welded Joints Made of Weldox 1100 Steel
,”
Weld. Int.
,
23
(
2
), pp.
83
90
.
29.
Juan
,
W.
,
Li
,
Y.
, and
Liu
,
P.
,
2003
, “
Effect of Weld Heat Input on Toughness and Structure of HAZ of a New Super-High Strength Steel
,”
Bull. Mater. Sci.
,
26
(
3
), pp.
301
305
.
30.
Shi
,
Y.
, and
Han
,
Z.
,
2008
, “
Effect of Weld Thermal Cycle on Microstructure and Fracture Toughness of Simulated Heat-Affected Zone for a 800 MPa Grade High Strength Low Alloy Steel
,”
J. Mater. Process. Technol.
,
207
(
1
), pp.
30
39
.
31.
EN ISO 15614-11
,
2002
,
Specification and Qualification of Welding Procedures for Metallic Materials-Welding Procedure Test-Part 11: Electron and Laser Beam Welding
, Finnish Standard Association SFS, Helsinki, Finland, Report No. SFS-EN ISO 15614-11.
32.
Farrokhi
,
F.
,
2014
, “
Autogenous High Power Fiber Laser Welding of Optim 960 QC Ultra High Strength Steel
,” Masters thesis, Lappeenranta University of Technology, Lappeenranta, Finland.
33.
EN ISO 13919-1
,
1996
,
Welding: Electrons and Laser Beam Welded Joints. Guidance on Quality Levels for Imperfections. Part 1: Steel
, Finnish Standard Association SFS, Helsinki, Finland, Report No. SFS-EN ISO 13919-1.
34.
ISO 22826
,
2005
,
Destructive Tests on Welds in Metallic Materials-Hardness Testing of Narrow Joints Welded by Laser and Electron Beam (Vickers and Knoop Hardness Tests)
.
35.
ISO 15614-1:2004/Amd
,
2012
,
Specification and Qualification of Welding Procedures for Metallic Materials-Welding Procedure Test-Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys-Amendment 2
, Finnish Standard Association SFS, Helsinki, Finland, SFS-EN ISO 15614-1/A2.
36.
CEN ISO/TR 15608
,
2013
,
Welding: Guidelines for a Metallic Materials Grouping System
, Finnish Standard Association SFS, Helsinki, Finland, CEN ISO/TR 15608.
37.
Ruukki Metals Oy.
,
2013
,
Welding General: Hot-Rolled Steel Sheets: Plates and Coils
, Rautaruukki Corporation,
Helsinki, Finland
.
38.
Hemmilä
,
M.
,
Laitinen
,
R.
,
Liimatainen
,
T.
, and
Porter
,
D.
,
2005
,
Mechanical and Technological Properties of Ultra High Strength Optim Steels
,
Rautaruukki Corporation
,
Helsinki, Finland
.
39.
EN ISO 4136
,
2012
,
Destructive Tests on Welds in Metallic Materials. Transverse Tensile Test
, Finnish Standard Association SFS, Helsinki, Finland, SFS-EN ISO 4136.
40.
EN ISO 148-1
,
2009
,
Metallic Materials-Charpy Pendulum Impact Test-Part 1: Test Method
, Finnish Standard Association SFS, Helsinki, Finland, SFS-EN ISO 148-1.
41.
Degenkolbe
,
J.
,
Uwer
,
D.
, and
Wegmann
,
H.
,
1984
, “
Characterisation of Welding Thermal Cycles With Regard to Their Effect on the Mechanical Properties of Welded Joints by Cooling Times t8/5 and Its Determination
,” IIW Document, International Institute of Welding, London.
42.
Sokolov
,
M.
,
Salminen
,
A.
,
Somonov
,
V.
, and
Kaplan
,
A. F.
,
2012
, “
Laser Welding of Structural Steels: Influence of the Edge Roughness Level
,”
Opt. Laser Technol.
,
44
(
7
), pp.
2064
2071
.
43.
Kawahito
,
Y.
,
Matsumoto
,
N.
,
Abe
,
Y.
, and
Katayama
,
S.
,
2013
, “
Laser Absorption Characteristics in High-Power Fiber Laser Welding of Stainless Steel
,”
Weld. Int.
,
27
(
2
), pp.
129
135
.
44.
Panda
,
S.
,
Sreenivasan
,
N.
,
Kuntz
,
M.
, and
Zhou
,
Y.
,
2008
, “
Numerical Simulations and Experimental Results of Tensile Test Behavior of Laser Butt Welded DP980 Steels
,”
ASME J. Eng. Mater. Technol.
,
130
(
4
), p.
041003
.
45.
Marimuthu
,
S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011004
.
You do not currently have access to this content.