Aluminum alloys are increasingly used in automotive manufacturing to save weight. The drawability of Al 5182-O has been proven at room temperature (RT) and it is also shown that formability is further enhanced at elevated temperatures (ETs) in the range of 250–350 °C. A cost effective application of ET forming of Al alloys can be achieved using heated blank and cold dies (HB–CD). In this study, the material behavior of Al 5182-O is characterized using tensile test and viscous bulge test at RT. The nonisothermal finite element model (FEM) of deep drawing is developed using the commercial software pamstamp. Initially, deep drawing simulations and tests were carried out at RT using a 300 ton servo press, with a hydraulic cushion. The predictions with flow stress curves obtained from tensile and bulge tests were compared with experimental data. The effect of punch speed and temperature rise during forming at RT is investigated. The warm forming simulations were carried out by combining material data at ETs obtained from the literature. The coupled effects of sheet temperatures and punch speeds are investigated through the finite element analysis (FEA) to provide guidelines for ET stamping of Al 5182-O.

References

1.
Toros
,
S.
,
Ozturk
,
F.
, and
Kacar
,
I.
,
2008
, “
Review of Warm Forming of Aluminum–Magnesium Alloys
,”
J. Mater. Process. Technol.
,
207
(
1
), pp.
1
12
.10.1016/j.jmatprotec.2008.03.057
2.
Billur
,
E.
, and
Altan
,
T.
,
2013
, “
Warm Forming of Alloys in the Auto Industry
,”
Stamping J.
, pp.
20
25
.
3.
Carsley
,
J.
,
Krajewski
,
P.
,
Schroth
,
J.
, and
Lee
,
T.
,
2006
, “
Aluminum Forming Technologies: Status and Research Opportunities
,”
New Developments in Sheet Metal Forming International Conference
, IFU, Stuttgart, Germany.
4.
Harrison
,
N. R.
,
2012
, “
Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys
,” AMD 905, DOE-USAMP Cooperative Agreement No. DE-FC26-020R22910.
5.
Friedman
,
P. A.
,
2009
, “
AMD 602 Final Report—Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet
,” DOE-USAMP Cooperative Agreement No. DE-FC05-020R22910.
6.
Harrison
,
N. R.
,
Ilinich
,
A.
,
Friedman
,
P. A.
,
Singh
,
J.
, and
Verma
,
R.
,
2013
, “
Optimization of High-Volume Warm Forming for Lightweight Sheet
,” SAE Technical Paper No. 2013-01-1170.
7.
Zhang
,
N.
, and
Abu-Farha
,
F.
,
2015
, “
Characterizing and Modeling the Deformation of AA5182 for Hot Blank–Cold Die (HB-CD) Stamping
,”
144th TMS Annual Meeting and Exhibition (TMS 2015)
, Orlando, FL, Mar. 15–19, pp.
315
320
.
8.
Osakada
,
K.
,
Mori
,
K.
,
Altan
,
T.
, and
Groche
,
P.
,
2011
, “
Mechanical Servo Press Technology for Metal Forming
,”
CIRP Ann.-Manuf. Technol.
,
60
(
2
), pp.
651
672
.10.1016/j.cirp.2011.05.007
9.
Altan
,
T.
, and
Groseclose
,
A.
,
2009
, “
Servo-Drive Presses-Recent Developments
,” Umformtechnisches Kolloqium Darmstadt, 10.
10.
Hayashi
,
H.
, and
Nishimura
,
H.
,
2009
, “
The Application of Servo Press Machine to Forming of Sheet Metals With Low Formability
,”
Ann. “Dunarea Jos” Univ. Galati Fasc. V: Technol. Mach. Build.
, pp.
3
10
.
11.
Groche
,
P.
, and
Möller
,
N.
,
2012
, “
Tribological Investigation of Deep-Drawing Processes Using Servo Presses
,”
ASME
Paper No. MSEC2012-7292.10.1115/MSEC2012-7292
12.
Taoka
,
H.
,
Mawari
,
H.
,
Higashi
,
H.
,
Ikehara
,
H.
,
Hashimoto
,
M.
, and
Kawano
,
Y.
,
2009
, “
Development of the World's Fastest Servo Press Line for Manufacturing Automotive Body Panels
,”
Mater. Process. Technol.
,
50
(
12
), pp.
33
38
.
13.
Kaya
,
S.
,
Spampinato
,
G.
, and
Altan
,
T.
,
2008
, “
An Experimental Study on Nonisothermal Deep Drawing Process Using Aluminum and Magnesium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061001
.10.1115/1.2975228
14.
Kim
,
H. S.
,
Koc
,
M.
,
Ni
,
J.
, and
Ghosh
,
A.
,
2006
, “
Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
613
621
.10.1115/1.2194065
15.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
,
2007
, “
Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models
,”
Int. J. Plast.
,
23
(
5
), pp.
841
875
.10.1016/j.ijplas.2006.10.005
16.
Li
,
J.
,
Hu
,
S. J.
,
Carsley
,
J. E.
,
Lee
,
T. M.
,
Hector
,
L. G.
, and
Mishra
,
S.
,
2011
, “
Postanneal Mechanical Properties of Prestrained AA5182-O Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061007
.10.1115/1.4004613
17.
Altan
,
T.
, and
Tekkaya
,
A. E.
, eds.,
2012
,
Sheet Metal Forming: Processes and Applications
,
ASM International
,
Materials Park, OH
.
18.
Nasser
,
A.
,
Yadav
,
A.
,
Pathak
,
P.
, and
Altan
,
T.
,
2010
, “
Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests
,”
J. Mater. Process. Technol.
,
210
(
3
), pp.
429
436
.10.1016/j.jmatprotec.2009.10.003
19.
Picu
,
R. C.
,
Vincze
,
G.
,
Ozturk
,
F.
,
Gracio
,
J. J.
,
Barlat
,
F.
, and
Maniatty
,
A. M.
,
2005
, “
Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O
,”
Mater. Sci. Eng.
, A,
390
(
1
), pp.
334
343
.10.1016/j.msea.2004.08.029
20.
Billur
,
E.
,
2013
, “
Fundamentals and Applications of Hot Stamping Technology for Producing Crash-Relevant Automotive Parts
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
You do not currently have access to this content.