There is a growing need of knowledge description of manufacturing equipment and their capabilities for users, in order to efficiently obtain the on-demand services of manufacturing equipment in cloud manufacturing, and the understanding of the manufacturing capability of equipment is the most important basis for optimizing the cloud service management. During the manufacturing processes, a number of uncertain incidents may occur, which could degrade the manufacturing system performance or even paralyze the production line. Hence, all aspects about the equipment should be reflected within the knowledge description, and the static and dynamic information are both included in the knowledge model of manufacturing equipment. Unification and dynamics are the most important characteristics of the framework of knowledge description. The primary work of this study is fourfold. First, three fundamental ontologies are built, namely, basic information ontology, functional ontology, and manufacturing process ontology. Second, the correlation between the equipment ontology and the fundamental ontology that forms the unified description framework is determined. Third, the mapping relationship between the real-time condition data and the model of manufacturing equipment capability ontology is established. On the basis of the mapping relationship, the knowledge structure of the manufacturing equipment capability ontology is able to update in real-time. Finally, a prototype system is developed to validate the feasibility of the proposed dynamic modeling method. The system implementation demonstrates that the proposed knowledge description framework and method are capable of reflecting the current conditions and the dynamic capability of manufacturing equipment.

References

1.
Li
,
B. H.
,
Zhang
,
L.
,
Wang
,
S. L.
,
Tao
,
F.
,
Cao
,
J. W.
,
Jiang
,
X. D.
,
Song
,
X.
, and
Chai
,
X. D.
,
2010
, “
Cloud Manufacturing: A New Service-Oriented Networked Manufacturing Model
,”
Comput. Integr. Manuf. Syst.
,
16
(
1
), pp.
1
7
.10.13196/j.cims.2010.01.3.libh.004
2.
Zhou
,
Z.
,
Wang
,
H.
, and
Lou
,
P.
,
2010
,
Manufacturing Intelligence for Industrial Engineering: Methods for System Self-Organization, Learning, and Adaptation
,
IGI Global
,
Hershey, PA
.
3.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.10.1115/1.4024040
4.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
.10.1016/j.rcim.2011.07.002
5.
Zhang
,
L.
,
Luo
,
Y.
,
Tao
,
F.
,
Li
,
B. H.
,
Ren
,
L.
,
Zhang
,
X.
,
Guo
,
H.
,
Cheng
,
Y.
,
Hu
,
A.
, and
Liu
,
Y.
,
2014
, “
Cloud Manufacturing: A New Manufacturing Paradigm
,”
Enterp. Inform. Syst.
,
8
(
2
), pp.
167
187
.10.1080/17517575.2012.683812
6.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
.10.1016/j.jmsy.2013.04.008
7.
Ren
,
L.
,
Zhang
,
L.
,
Wang
,
L.
,
Tao
,
F.
, and
Chai
,
X.
,
2014
, “
Cloud Manufacturing: Key Characteristics and Applications
,”
Int. J. Comput. Integr. Manuf.
10.1080/0951192X.2014.902105
8.
Ameri
,
F.
, and
Patil
,
L.
,
2012
, “
Digital Manufacturing Market: A Semantic Web-Based Framework for Agile Supply Chain Deployment
,”
J. Intell. Manuf.
,
23
(
5
), pp.
1817
1832
.10.1007/s10845-010-0495-z
9.
Li
,
R.
,
Liu
,
Q.
, and
Xu
,
W.
,
2012
, “
Perception and Access Adaptation of Equipment Resources in Cloud Manufacturing
,”
Comput. Integr. Manuf. Syst.
,
18
(
7
), pp.
1547
1553
.10.13196/j.cims.2012.07.206.lirf.023
10.
Baykasoglu
,
A.
,
2003
, “
Capability-Based Distributed Layout Approach for Virtual Manufacturing Cells
,”
Int. J. Prod. Res.
,
41
(
11
), pp.
2597
2618
.10.1080/0020754031000087229
11.
Lu
,
Y.
,
Xu
,
X.
, and
Xu
,
J.
,
2014
, “
Development of a Hybrid Manufacturing Cloud
,”
J. Manuf. Syst.
,
33
(
4
), pp.
551
566
.10.1016/j.jmsy.2014.05.003
12.
Chang
,
Q.
,
Pan
,
C.
,
Xiao
,
G.
, and
Biller
,
S.
,
2013
, “
Integrated Modeling of Automotive Assembly Line With Material Handling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011018
.10.1115/1.4023365
13.
Chapurlat
,
V.
,
Diep
,
D.
,
Kalogeras
,
A.
, and
Gialelis
,
J.
,
2007
, “
Building and Validating a Manufacturing Ontology to Achieve Interoperability
,”
Enterprise Interoperability II
,
Springer
,
London
, pp.
261
272
.
14.
Lutters
,
D.
,
Wijnker
,
T. C.
, and
Kals
,
H. J. J.
,
1999
, “
Information Management in Process Planning
,”
CIRP Ann. Manuf. Technol.
,
48
(
1
), pp.
385
388
.10.1016/S0007-8506(07)63208-9
15.
Denkena
,
B.
,
Shpitalni
,
M.
,
Kowalski
,
P.
,
Molcho
,
G.
, and
Zipori
,
Y.
,
2007
, “
Knowledge Management in Process Planning
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
175
180
.10.1016/j.cirp.2007.05.042
16.
Gao
,
J. X.
, and
Huang
,
X. X.
,
1996
, “
Product and Manufacturing Capability Modelling in an Integrated CAD/Process Planning Environment
,”
Int. J. Adv. Manuf. Technol.
,
11
(
1
), pp.
43
51
.10.1007/BF01177183
17.
Wang
,
L.
,
2013
, “
Machine Availability Monitoring and Machining Process Planning Towards Cloud Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
4
), pp.
263
273
.10.1016/j.cirpj.2013.07.001
18.
Luo
,
Y.
,
Zhang
,
L.
,
Tao
,
F.
,
Ren
,
L.
,
Liu
,
Y.
, and
Zhang
,
Z.
,
2013
, “
A Modeling and Description Method of Multidimensional Information for Manufacturing Capability in Cloud Manufacturing System
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
961
975
.10.1007/s00170-013-5076-9
19.
Skinner
,
W.
,
1969
, “
Manufacturing—Missing Link in Corporate Strategy
,”
Harv. Bus. Rev.
,
47
(
3
), pp.
136
145
.
20.
Größler
,
A.
,
2010
, “
The Development of Strategic Manufacturing Capabilities in Emerging and Developed Markets
,”
Oper. Manag. Res.
,
3
(
1–2
), pp.
60
67
.10.1007/s12063-010-0033-3
21.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.10.1006/knac.1993.1008
22.
Guarino
,
N.
,
1998
, “
Formal Ontology and Information Systems
,”
1st International Conference on Formal Ontology in Information Systems (FOIS'98)
, Trento, Italy, pp.
3
15
.
23.
Narock
,
T.
,
Yoon
,
V.
, and
March
,
S.
,
2014
, “
A Provenance-Based Approach to Semantic Web Service Description and Discovery
,”
Decis. Support Syst.
,
64
, pp.
90
99
.10.1016/j.dss.2014.04.007
24.
Breslin
,
J. G.
,
O'Sullivan
,
D.
,
Passant
,
A.
, and
Vasiliu
,
L.
,
2010
, “
Semantic Web Computing in Industry
,”
Comput. Ind.
,
61
(
8
), pp.
729
741
.10.1016/j.compind.2010.05.002
25.
Garcia-Crespo
,
A.
,
Ruiz-Mezcua
,
B.
,
Lopez-Cuadrado
,
J. L.
, and
Gomez-Berbis
,
J. M.
,
2010
, “
Conceptual Model for Semantic Representation of Industrial Manufacturing Processes
,”
Comput. Ind.
,
61
(
7
), pp.
595
612
.10.1016/j.compind.2010.01.004
26.
Sun
,
W.
, and
Feng
,
Y.
,
2010
, “
Manufacturing Capability of P-P-R Modeling
,”
J. Nanjing Univ. Aeronaut. Astronaut.
,
42
(
2
), pp.
214
218
.
27.
Liu
,
Y.
, and
Shi
,
M.
,
2011
, “
Machining Services Description Modeling Based on OWL-DL
,”
Comput. Integr. Manuf. Syst.
,
17
(
4
), pp.
767
775
.10.13196/j.cims.2011.04.97.liuy.026
28.
Bhattacharya
,
A.
,
Tiwari
,
M. K.
, and
Harding
,
J. A.
,
2012
, “
A Framework for Ontology Based Decision Support System for e-Learning Modules, Business Modeling and Manufacturing Systems
,”
J. Intell. Manuf.
,
23
(
5
), pp.
1763
1781
.10.1007/s10845-010-0480-6
29.
Mönch
,
L.
, and
Stehli
,
M.
,
2003
, “
An Ontology for Production Control of Semiconductor Manufacturing Processes
,”
Multiagent System Technologies
,
Springer
,
Berlin
, pp.
156
167
.10.1007/978-3-540-39869-1_14
30.
Timm
,
I.
, and
Woelk
,
P.-O.
,
2003
, “
Ontology-Based Capability Management for Distributed Problem Solving in the Manufacturing Domain
,”
Multiagent System Technologies
,
Springer
,
Berlin
, pp.
168
179
.10.1007/978-3-540-39869-1_15
31.
Dassisti
,
M.
,
Chimienti
,
M.
,
Shuaib
,
M.
,
Badurdeen
,
F.
, and
Jawahir
,
I. S.
,
2012
, “
Sustainable Manufacturing: A Framework for Ontology Development
,”
Sustainable Manufacturing
,
Springer
,
Berlin
, pp.
33
39
.10.1007/978-3-642-27290-5_5
32.
Singh
,
C.
,
Shao
,
Q.
,
Lu
,
Y.
,
Xu
,
X.
, and
Ye
,
X.
,
2014
, “
Tool Selection: A Cloud-Based Approach
,”
Frontier and Innovation in Future Computing and Communications
,
Springer
,
Amsterdam
, pp.
237
245
.10.1007/978-94-017-8798-7_29
33.
Markaki
,
O.
,
Kokkinakos
,
P.
,
Panopoulos
,
D.
,
Koussouris
,
S.
, and
Askounis
,
D.
,
2013
, “
Benefits and Risks in Dynamic Manufacturing Networks
,”
Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services
,
Springer
,
Berlin Heidelberg
, pp.
438
445
.10.1007/978-3-642-40361-3_56
34.
Cordes
,
P.
, and
Hülsmann
,
M.
,
2013
, “
Dynamic Capabilities in Manufacturing Processes: A Knowledge-Based Approach for the Development of Manufacturing Flexibilities
,”
Robust Manufacturing Control
,
Springer
,
Berlin
, pp.
519
534
.10.1007/978-3-642-30749-2_38
35.
Liu
,
H.
,
Xin
,
S.
,
Xu
,
W.
, and
Zhao
,
Y.
,
2013
, “
Dynamic Comprehensive Evaluation of Manufacturing Capability for a Job Shop
,”
Advances in Swarm Intelligence
,
Springer
,
Berlin
, pp.
360
367
.10.1007/978-3-642-38715-9_43
36.
Lee
,
M.
,
Yoon
,
H.
,
Shin
,
H.
, and
Lee
,
D.
,
2009
, “
Intelligent Dynamic Workflow Support for a Ubiquitous Web Service-Based Manufacturing Environment
,”
J. Intell. Manuf.
,
20
(
3
), pp.
295
302
.10.1007/s10845-008-0217-y
37.
Peng
,
Y.
, and
Kang
,
Y.
,
2013
, “
Ontology-Based Dynamic Forms for Manufacturing Capability Information Collection
,”
Advances in Production Management Systems. Sustainable Production and Service Supply Chains
,
Springer
,
Berlin
, pp.
468
476
.
38.
Kiritsis
,
D.
,
El Kadiri
,
S.
,
Perdikakis
,
A.
,
Milicic
,
A.
,
Alexandrou
,
D.
, and
Pardalis
,
K.
,
2013
, “
Design of Fundamental Ontology for Manufacturing Product Lifecycle Applications
,”
Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services
,
Springer
,
Berlin
, pp.
376
382
.10.1007/978-3-642-40352-1_47
39.
jena,
2014
, “
Apache Jena Project
,” http://jena.apache.org
40.
Chang
,
L.
,
Lin
,
F.
, and
Shi
,
Z.
,
2007
, “
A Dynamic Description Logic for Representation and Reasoning About Actions
,”
Knowledge Science, Engineering and Management
,
Springer
,
Berlin
, pp.
115
127
.
41.
Zhou
,
Z.
,
Chen
,
Y.
,
Fuh
,
J. Y. H.
, and
Nee
,
A. Y. C.
,
2000
, “
Integrated Condition Monitoring and Fault Diagnosis for Modern Manufacturing Systems
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
387
390
.10.1016/S0007-8506(07)62971-0
42.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
,
2005
, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
693
710
.10.1007/s00170-004-2038-2
43.
Zhou
,
Z.
,
Liu
,
Q.
,
Ai
,
Q.
, and
Xu
,
C.
,
2011
, “
Intelligent Monitoring and Diagnosis for Modern Mechanical Equipment Based on the Integration of Embedded Technology and FBGS Technology
,”
Measurement
,
44
(
9
), pp.
1499
1511
.10.1016/j.measurement.2011.05.018
44.
Xu
,
L.
,
He
,
W.
, and
Li
,
S.
,
2014
, “
Internet of Things in Industries: A Survey
,”
IEEE Trans. Ind. Inform.
,
10
(
4
), pp.
2233
2243
.10.1109/TII.2014.2300753
45.
Jiang
,
P.
, and
Cao
,
W.
,
2013
, “
An RFID-Driven Graphical Formalized Deduction for Describing the Time-Sensitive State and Position Changes of Work-in-Progress Material Flows in a Job-Shop Floor
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031009
.10.1115/1.4024037
46.
Huang
,
G. Q.
,
Wright
,
P. K.
, and
Newman
,
S. T.
,
2009
, “
Wireless Manufacturing: A Literature Review, Recent Developments, and Case Studies
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
579
594
.10.1080/09511920701724934
You do not currently have access to this content.