Cloud computing, as a new paradigm for aggregating computing resources and delivering services over the Internet, is of considerable interest to both academia and the industry. In this paper, the main characteristics of cloud computing are summarized, in view of its application to the manufacturing industry. Analytic models such as analytic hierarchy process (AHP) method for selecting appropriate cloud services are analyzed, with respect to computational cost and network communication that present a bottleneck for effective utilization of this new infrastructure. The review presented in this paper aims to assist academic researchers and manufacturing enterprises in obtaining an overview of the state-of-the-knowledge of cloud computing when exploring this emerging platform for service.

References

1.
Buyya
,
R.
,
Yeo
,
C. S.
, and
Venugopal
,
S.
,
2008
, “
Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering It Services as Computing Utilities
,”
10th IEEE International Conference on High Performance Computing and Communications
, Dalian, China, pp.
5
13
.
2.
Rosenthal
,
A.
,
Mork
,
P.
,
Li
,
M. H.
,
Stanford
,
J.
,
Koester
,
D.
, and
Reynolds
,
P.
,
2010
, “
Cloud Computing: A New Business Paradigm for Biomedical Information Sharing
,”
J. Biomed. Inf.
,
43
(
2
), pp.
342
353
.10.1016/j.jbi.2009.08.014
3.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
28
(
1
), pp.
75
86
.10.1016/j.rcim.2011.07.002
4.
De Assunção
,
M. D.
,
Di Costanzo
,
A.
, and
Buyya
,
R.
,
2009
, “
Evaluating the Cost-Benefit of Using Cloud Computing to Extend the Capacity of Clusters
,”
18th ACM International Symposium on High Performance Distributed Computing
, Munich, Germany, pp.
141
150
.
5.
Iosup
,
A.
,
Ostermann
,
S.
,
Yigitbasi
,
M. N.
,
Prodan
,
R.
,
Fahringer
,
T.
, and
Epema
,
D. H.
,
2011
, “
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing
,”
IEEE Trans. Parallel Distrib. Syst.
,
22
(
6
), pp.
931
945
.10.1109/TPDS.2011.66
6.
García-Valls
,
M.
,
Cucinotta
,
T.
, and
Lu
,
C.
,
2014
, “
Challenges in Real-Time Virtualization and Predictable Cloud Computing
,”
J. Syst. Architect.
,
60
(9), pp.
726
740
.10.1016/j.sysarc.2014.07.004
7.
Armbrust
,
M.
,
Fox
,
A.
,
Griffith
,
R.
,
Joseph
,
A. D.
,
Katz
,
R.
,
Konwinski
,
A.
,
Lee
,
G.
,
Patterson
,
D.
,
Rabakin
,
A.
,
Stoica
,
I.
, and
Zaharia
,
M.
,
2010
, “
A View of Cloud Computing
,”
Commun. ACM
,
53
(
4
), pp.
50
58
.10.1145/1721654.1721672
8.
Yang
,
Y.
,
Gao
,
R.
,
Fan
,
Z.
,
Wang
,
J.
, and
Wang
,
L.
,
2014
, “
Cloud-Based Prognosis: Perspective and Challenge
,”
ASME
Paper No. MSEC2014-4155. 10.1115/MSEC2014-4155
9.
Wang
,
L.
,
2013
, “
Machine Availability Monitoring and Machining Process Planning Towards Cloud Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
4
), pp.
263
273
.10.1016/j.cirpj.2013.07.001
10.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
.10.1016/j.jmsy.2013.04.008
11.
Asadi
,
M.
, and
Goldak
,
J. A.
,
2014
, “
An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011007
.10.1115/1.4025406
12.
Tutar
,
M.
, and
Karakus
,
A.
,
2013
, “
Computational Modeling of the Effects of Viscous Dissipation on Polymer Melt Flow Behavior During Injection Molding Process in Plane Channels
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011007
.10.1115/1.4023239
13.
Ren
,
L.
,
Zhang
,
L.
,
Wang
,
L.
,
Tao
,
F.
, and
Chai
,
X.
,
2014
, “
Cloud Manufacturing: Key Characteristics and Applications
,”
Int. J. Comput. Integr. Manuf.
, pp.
1
15
.10.1080/0951192X.2014.902105
14.
Wang
,
L.
,
Holm
,
M.
, and
Adamson
,
G.
,
2010
, “
Embedding a Process Plan in Function Blocks for Adaptive Machining
,”
CIRP Ann.–Manuf. Technol.
,
59
(
1
), pp.
433
436
.10.1016/j.cirp.2010.03.144
15.
Ganguly
,
V.
,
Schmitz
,
T.
,
Graziano
,
A.
, and
Yamaguchi
,
H.
,
2013
, “
Force Measurement and Analysis for Magnetic Field–Assisted Finishing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041016
.10.1115/1.4023723
16.
Shu
,
S.
,
Cheng
,
K.
,
Ding
,
H.
, and
Chen
,
S.
,
2013
, “
An Innovative Method to Measure the Cutting Temperature in Process by Using an Internally Cooled Smart Cutting Tool
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061018
.10.1115/1.4025742
17.
Rao
,
P.
,
Bukkapatnam
,
S.
,
Beyca
,
O.
,
Kong
,
Z. J.
, and
Komanduri
,
R.
,
2014
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026210
18.
Ren
,
L.
,
Zhang
,
L.
,
Tao
,
F.
,
Zhao
,
C.
,
Chai
,
X.
, and
Zhao
,
X.
,
2013
, “
Cloud Manufacturing: From Concept to Practice
,”
Enterp. Inf. Syst.
,
9
(
2
), pp.
1
24
.10.1080/17517575.2013.839055
19.
Wang
,
L.
,
Wang
,
X. V.
,
Gao
,
L.
, and
Vancza
,
J.
,
2014
, “
A Cloud-Based Approach for WEEE Remanufacturing
,”
CIRP Ann.–Manuf. Technol.
,
63
(
1
), pp.
409
412
.10.1016/j.cirp.2014.03.114
20.
Wang
,
X.
, and
Xu
,
X.
,
2013
, “
ICMS: A Cloud-Based Manufacturing System
,”
Cloud Manufacturing
,
Springer
,
London
, pp.
1
22
.10.1007/978-1-4471-4935-4_1
21.
Wu
,
D.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2014
, “
Cloud-Based Design and Manufacturing: Status and Promise
,”
Cloud-Based Design and Manufacturing (CBDM): A Service-Oriented Product Development Paradigm for the 21st Century
,
D.
Schaefer
, ed.,
Springer
,
London
, pp.
1
24
.10.1007/978-3-319-07398-9_1
22.
Wang
,
X.
, and
Xu
,
X.
,
2013
, “
An Interoperable Solution for Cloud Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
232
247
.10.1016/j.rcim.2013.01.005
23.
Wu
,
D.
,
Thames
,
J. L.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Enhancing the Product Realization Process With Cloud-Based Design and Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), pp.
1
12
.10.1115/1.4025257
24.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
.10.1016/j.mfglet.2013.09.005
25.
Zhang
,
Q.
,
Cheng
,
L.
, and
Boutaba
,
R.
,
2010
, “
Cloud Computing: State-of-the-Art and Research Challenges
,”
J. Internet Serv. Appl.
,
1
(
1
), pp.
7
18
.10.1007/s13174-010-0007-6
26.
Jula
,
A.
,
Sundararajan
,
E.
, and
Othman
,
Z.
,
2014
, “
Cloud Computing Service Composition: A Systematic Literature Review
,”
Expert Syst. Appl.
,
41
(
8
), pp.
3809
3824
.10.1016/j.eswa.2013.12.017
27.
Dillon
,
T.
,
Wu
,
C.
, and
Chang
,
E.
,
2010
, “
Cloud Computing: Issues and Challenges
,”
24th IEEE International Conference on Advanced Information Networking and Applications (AINA)
, Apr. 20–23, Perth, Australia, pp.
27
33
.10.1109/AINA.2010.187
28.
Sakellari
,
G.
, and
Loukas
,
G.
,
2013
, “
A Survey of Mathematical Models, Simulation Approaches and Testbeds Used for Research in Cloud Computing
,”
Simul. Modell. Pract. Theory
,
39
, pp.
92
103
.10.1016/j.simpat.2013.04.002
29.
Agrawal
,
D.
,
Das
,
S.
, and
Abbadi
,
A. E.
,
2011
, “
Big Data and Cloud Computing: Current State and Future Opportunities
,”
14th International Conference on Extending Database Technology
, Uppsala, Sweden, pp.
530
533
.10.1145/1951365.1951432
30.
Nurmi
,
D.
,
Wolski
,
R.
,
Grzegorczyk
,
C.
,
Obertelli
,
G.
,
Soman
,
S.
,
Youseff
,
L.
, and
Zagorodnov
,
D.
,
2009
, “
The Eucalyptus Open-Source Cloud-Computing System
,” 9th
IEEE/ACM
International Symposium on Cluster Computing and the Grid
, Shanghai, China, May 18–20, pp.
124
131
.10.1109/CCGRID.2009.93
31.
Manvi
,
S.
, and
Shyam
,
G.
,
2014
, “
Resource Management for Infrastructure as a Service (IaaS) in Cloud Computing: A Survey
,”
J. Network Comput. Appl.
,
41
, pp.
414
440
.10.1016/j.jnca.2013.10.004
32.
Garg
,
S. K.
,
Versteeg
,
S.
, and
Buyya
,
R.
,
2013
, “
A Framework for Ranking of Cloud Computing Services
,”
Future Gener. Comput. Syst.
,
29
(
4
), pp.
1012
1023
.10.1016/j.future.2012.06.006
33.
Mell
,
P.
, and
Grance
,
T.
,
2009
, “
The NIST Definition of Cloud Computing
,”
Natl. Inst. Stand. Technol.
Special Publication, 800-145,
34.
35.
Palankar
,
M. R.
,
Iamnitchi
,
A.
,
Ripeanu
,
M.
, and
Garfinkel
,
S.
,
2008
, “
Amazon S3 for Science Grids: A Viable Solution?
,”
2008 International Workshop on Data-Aware Distributed Computing
, Boston, MA, pp.
55
64
.10.1145/1383519.1383526
36.
37.
Popa
,
L.
,
Kumar
,
G.
,
Chowdhury
,
M.
,
Krishnamurthy
,
A.
,
Ratnasamy
,
S.
, and
Stoica
,
I.
,
2012
, “
FairCloud: Sharing the Network in Cloud Computing
,”
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication
, Helsinki, Finland, pp.
187
198
.10.1145/2377677.2377717
38.
Greenberg
,
A.
,
Hamilton
,
J.
,
Maltz
,
D. A.
, and
Patel
,
P.
,
2008
, “
The Cost of a Cloud: Research Problems in Data Center Networks
,”
ACM SIGCOMM Comput. Commun. Rev.
,
39
(
1
), pp.
68
73
.10.1145/1496091.1496103
39.
Kumar
,
K.
, and
Lu
,
Y.
,
2010
, “
Cloud Computing for Mobile Users: Can Offloading Computation Save Energy
,”
Computer
,
43
(
4
), pp.
51
56
.10.1109/MC.2010.98
40.
Brender
,
N.
, and
Markov
,
I.
,
2013
, “
Risk Perception and Risk Management in Cloud Computing: Results From a Case Study of Swiss Companies
,”
Int. J. Inf. Manage.
,
33
(
5
), pp.
726
733
.10.1016/j.ijinfomgt.2013.05.004
41.
Yu
,
S.
,
Wang
,
C.
,
Ren
,
K.
, and
Lou
,
W.
,
2010
, “
Achieving Secure, Scalable, and Fine-Grained Data Access Control in Cloud Computing
,”
2010 IEEE INFOCOM
, San Diego, CA, Mar. 14–19, pp.
1
9
.10.1109/INFCOM.2010.5462174
42.
Mergen
,
M.
,
Uhlig
,
V.
,
Krieger
,
O.
, and
Xenidis
,
J.
,
2006
, “
Virtualization for High-Performance Computing
,”
ACM SIGOPS Oper. Syst. Rev.
,
40
(
2
), pp.
8
11
.10.1145/1131322.1131328
43.
Ibrahim
,
S.
,
He
,
B.
, and
Jin
,
H.
,
2011
, “
Towards Pay-as-You-Consume Cloud Computing
,” 2011
IEEE
International Conference on Services Computing
, Washington, DC, July 4–9, pp.
370
377
.10.1109/SCC.2011.38
44.
Kondo
,
D.
,
Javadi
,
B.
,
Malecot
,
P.
,
Cappello
,
F.
, and
Anderson
,
D. P.
,
2009
, “
Cost-Benefit Analysis of Cloud Computing Versus Desktop Grids
,” 2009
IEEE
International
Symposium on Parallel and Distributed Processing
, Rome, Italy, May 23–29, pp.
1
12
.10.1109/IPDPS.2009.5160911
45.
Deelman
,
E.
,
Singh
,
G.
,
Livny
,
M.
,
Berriman
,
B.
, and
Good
,
J.
,
2008
, “
The Cost of Doing Science on The Cloud: The Montage Example
,” 2008
ACM/IEEE
Conference on Supercomputing
, Austin, TX, Nov. 15–21, p.
50
.10.1109/SC.2008.5217932
46.
Chaisiri
,
S.
,
Lee
,
B. S.
, and
Niyato
,
D.
,
2012
, “
Optimization of Resource Provisioning Cost in Cloud Computing
,”
IEEE Trans. Serv. Comput.
,
5
(
2
), pp.
164
177
.10.1109/TSC.2011.7
47.
Chaisiri
,
S.
,
Lee
,
B. S.
, and
Niyato
,
D.
,
2009
, “
Optimal Virtual Machine Placement Across Multiple Cloud Providers
,”
IEEE
Asia-Pacific Services Computing Conference
, Kuala Lumpur, Malaysia, Dec. 7–11. 10.1109/APSCC.2009.5394134
48.
Sun
,
L.
,
Hussain
,
F. K.
,
Hussain
,
O. K.
, and
Chang
,
E.
,
2014
, “
Cloud Service Selection: State-of-the-Art and Future Research Directions
,”
J. Network Comput. Appl.
,
45
, pp.
134
150
.10.1016/j.jnca.2014.07.019
49.
Singh
,
R.
,
Sharma
,
U.
,
Cecchet
,
E.
, and
Shenoy
,
P.
,
2010
, “
Autonomic Mix-Aware Provisioning for Non-Stationary Data Center Workloads
,”
7th International Conference on Autonomic Computing
, Washington, DC, pp.
21
30
.
50.
Karim
,
R.
,
Ding
,
C.
, and
Miri
,
A.
,
2013
, “
An End-to-End QoS Mapping Approach for Cloud Service Selection
,”
IEEE 9th World Congress on Services
, Santa Clara, CA, June 28–July3. 10.1109/SERVICES.2013.71
51.
Godse
,
M.
, and
Mulik
,
S.
,
2009
, “
An Approach for Selecting Software-as-a-Service (SaaS) Product
,”
IEEE International Conference on Cloud Computing
, Bangalore, India.
52.
Zeng
,
L.
,
Zhao
,
Y.
, and
Zeng
,
J.
,
2009
, “
Cloud Serivces and Service Selection Algorithm Research
,”
First ACM/SIGEVO Summit on Genetic and Evolutionary Computation
, Shanghai, China, pp.
1045
1048
.
53.
Limam
,
N.
, and
Boutaba
,
R.
,
2010
, “
Assessing Software Service Quality and Trustworthiness at Selection Time
,”
IEEE Trans. Software Eng.
,
36
(
4
), pp.
559
574
.10.1109/TSE.2010.2
54.
Yan
,
R.
,
Sun
,
H.
, and
Qian
,
Y.
,
2013
, “
Energy-Aware Sensor Node Design With Its Application in Wireless Sensor Networks
,”
IEEE Trans. Instrum. Meas.
,
62
(
5
), pp.
1183
1191
.10.1109/TIM.2013.2245181
55.
Yan
,
R.
,
Fan
,
Z.
,
Gao
,
R.
, and
Sun
,
H.
,
2013
, “
Energy-Efficient Sensor Data Gathering in Wireless Sensor Networks
,”
Sens. Mater.
,
25
(
1
), pp.
31
44
.
56.
Ball
,
D.
,
Yan
,
R.
,
Licht
,
T.
,
Deshmukh
,
A.
, and
Gao
,
R.
,
2008
, “
A Strategy for Decomposing Large-Scale Energy Constrained Sensor Networks for System Monitoring
,”
Prod. Plann. Control
,
19
(
4
), pp.
435
447
.10.1080/09537280802034653
57.
Wells
,
L. J.
,
Camelio
,
J. A.
,
Williams
,
C. B.
, and
White
,
J.
,
2014
, “
Cyber-Physical Security Challenges in Manufacturing Systems
,”
Manuf. Lett.
,
2
(
2
), pp.
74
77
.10.1016/j.mfglet.2014.01.005
58.
Larkin
,
R. D.
,
Lopez
,
J.
, Jr.
,
Butts
,
J. W.
, and
Grimaila
,
M.
,
2014
, “
Evaluation of Security Solutions in the SCADA Environment
,”
ACM SIGMIS Database
,
45
(
1
), pp.
38
53
.10.1145/2591056.2591060
59.
Huang
,
Q.
,
Yang
,
C.
,
Liu
,
K.
,
Xia
,
J.
,
Xu
,
C.
,
Li
,
J.
, and
Li
,
Z.
,
2013
, “
Evaluating Open-Source Cloud Computing Solutions for Geosciences
,”
Comput. Geosci.
,
59
, pp.
41
52
.10.1016/j.cageo.2013.05.001
60.
Teng
,
F.
, and
Magoules
,
F.
,
2010
, “
A New Game Theoretical Resource Allocation Algorithm for Cloud Computing
,”
Advances in Grid and Pervasive Computing
, Springer, Berlin, Heidelberg, pp.
321
330
.10.1007/978-3-642-13067-0_35
61.
Quiroz
,
A.
,
Kim
,
H.
,
Parashar
,
M.
,
Gnanasambandam
,
N.
, and
Sharma
,
N.
,
2009
, “
Towards Autonomic Workload Provisioning for Enterprise Grids and Clouds
,” 10th
IEEE/ACM
International Conference on Grid Computing
, Victoria, Australia, Oct. 13–15, pp.
50
57
.10.1109/GRID.2009.5353066
62.
Sotomayor
,
B.
,
Montero
,
R. S.
,
Llorente
,
I. M.
, and
Foster
,
I.
,
2009
, “
An Open Source Solution for Virtual Infrastructure Management in Private and Hybrid Clouds
,”
IEEE international Conference on Internet Computing
, Cancouver, Canada, pp.
78
89
.
63.
Buyya
,
R.
, and
Ranjan
,
R.
,
2010
, “
Federated Resource Management in Grid and Cloud Computing Systems
,”
Future Gener. Comput. Syst.
,
26
(8), pp.
1189
1191
.10.1016/j.future.2010.06.003
64.
Huber
,
N.
,
von Quast
,
M.
,
Hauck
,
M.
, and
Kounev
,
S.
,
2011
, “
Evaluating and Modeling Virtualization Performance Overhead for Cloud Environments
,”
International Conference on Cloud Computing and Service Science
, Noordwijkerhout, The Netherlands, pp.
563
573
.
65.
Kousiouris
,
G.
,
Cucinotta
,
T.
, and
Varvarigou
,
T.
,
2011
, “
The Effects of Scheduling, Workload Type and Consolidation Scenarios on Virtual Machine Performance and Their Prediction Through Optimized Artificial Neural Networks
,”
J. Syst. Software
,
84
(
8
), pp.
1270
1291
.10.1016/j.jss.2011.04.013
66.
Schad
,
J.
,
Dittrich
,
J.
, and
Quiané-Ruiz
,
J. A.
,
2010
, “
Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance
,”
Proc. VLDB Endowment
,
3
(
1–2
), pp.
460
471
.10.14778/1920841.1920902
67.
Barham
,
P.
,
Dragovic
,
B.
,
Fraser
,
K.
,
Hand
,
S.
,
Harris
,
T.
,
Ho
,
A.
,
Neugebauer
,
R.
,
Pratt
,
I.
, and
Warfield
,
A.
,
2003
, “
Xen and the Art of Virtualization
,”
ACM SIGOPS Oper. Syst. Rev.
,
37
(
5
), pp.
164
177
.10.1145/1165389.945462
68.
Mei
,
Y.
,
Liu
,
L.
,
Pu
,
X.
,
Sivathanu
,
S.
, and
Dong
,
X.
,
2013
, “
Performance Analysis of Network I/O Workloads in Virtualized Data Centers
,”
IEEE Trans. Serv. Comput.
,
6
(
1
), pp.
48
63
.10.1109/TSC.2011.36
69.
Guan
,
H.
,
Ma
,
R.
, and
Li
,
J.
,
2014
, “
Workload-Aware Credit Scheduler for Improving Network I/O Performance in Virtualization Environment
,”
IEEE Trans. Cloud Comput.
,
2
(
2
), pp.
130
142
.10.1109/TCC.2014.2314649
70.
Shafer
,
J.
,
2010
, “
I/O Virtualization Bottlenecks in Cloud Computing Today
,”
2nd Conference on I/O Virtualization
, Berkeley, CA.
71.
Bourguiba
,
M.
,
Haddadou
,
K.
,
El Korbi
,
I.
, and
Pujolle
,
G.
,
2014
, “
Improving Network I/O Virtualization for Cloud Computing
,”
IEEE Trans. Parallel Distrib. Syst.
,
25
(
3
), pp.
673
681
.10.1109/TPDS.2013.29
72.
Ranadive
,
A.
,
Kesavan
,
M.
,
Gavrilovska
,
A.
, and
Schwan
,
K.
,
2008
, “
Performance Implications of Virtualizing Multicore Cluster Machines
,” 2nd
ACM
Workshop on System-Level Virtualization for High Performance Computing
, Glasgow, Scotland, pp.
1
8
.10.1145/1435452.1435453
73.
Cherkasova
,
L.
, and
Gardner
,
R.
,
2005
, “
Measuring CPU Overhead for I/O Processing in the Xen Virtual Machine Monitor
,”
USENIX Annual Technical Conference
, Anaheim, CA.
74.
Subashini
,
S.
, and
Kavitha
,
V.
,
2011
, “
A Survey on Security Issues in Service Delivery Models of Cloud Computing
,”
J. Network Comput. Appl.
,
34
(
1
), pp.
1
11
.10.1016/j.jnca.2010.07.006
75.
Lori
,
M.
,
2009
,
Data Security in the World of Cloud Computing, Co-published by IEEE Comput. Reliab. Soc.
, pp.
61
64
.
76.
Brender
,
N.
, and
Markov
,
I.
,
2013
, “
Risk Perception and Risk Management in Cloud Computing: Results From a Case Study of Swiss Companies
,”
Int. J. Inf. Manage.
,
33
(
5
), pp.
726
733
.10.1016/j.ijinfomgt.2013.05.004
77.
Subashini
,
S.
, and
Kavitha
,
V.
,
2011
, “
A Survey on Security Issues in Service Delivery Models of Cloud Computing
,”
J. Network Comput. Appl.
,
34
(
1
), pp.
1
11
.10.1016/j.jnca.2010.07.006
78.
Archer
,
J.
, and
Boehm
,
A.
,
2009
, “
Security Guidance for Critical Areas of Focus in Cloud Computing
,”
Cloud Security Alliance
, pp.
1
76
.
You do not currently have access to this content.