Laser cladding (LC) is a material deposition technique, in which a laser beam is used to deposit one or several layers of a certain clad material onto a substrate to improve its wear or corrosion resistance. It can also be used for structural repair. Consequently, it is of interest to characterize the residual stresses and the microstructure along with the clad geometry as a function of process parameters. A 100 W fiber laser and focusing optics capable of producing very small spot sizes (∼10 μm) have been integrated with a micromachining center. This paper focuses on providing a comprehensive metallurgical and mechanical characterization of microscale LC of preplaced powdered mixture of cobalt and titanium on IS 2062 (ASTM A36) substrate. Parametric studies were conducted by varying the scanning velocity, laser power, and spot size to produce clad layers well bonded to the substrate. The results show that the width and height of the cladding increases up to 28% and 36%, respectively, due to the variation in the laser parameters. An increase of up to 85% in the microhardness is observed in the cladded layer with presence of Ti–Co intermetallic compounds at the interface, highlighting the application of the process in improving subsurface properties of existing components. The residual stresses obtained in the cladded layer are compressive in nature, indicating the potential application of this technique for repair of structures. In addition, a finite element model has been developed for predicting the clad geometry using a moving Gaussian heat source. Molten region is determined from the thermal model and Tanner's law has been used to account for spreading of the molten layer to accurately predict the clad geometry. The model predicts clad geometry with reasonable prediction errors less than 10% for most cases with stronger dependence on scan velocities in comparison to laser power.

References

1.
McIntyre
,
R. M.
,
1983
, “
Laser Hard Surfacing of Turbine Blade Shroud Interlocks
,”
Proceedings of the 2nd International Conference on Applications of Lasers in Materials Processing
,
Los Angeles, CA
, pp.
230
240
.
2.
Rolls-Royce Ltd.
,
1980
, “
Laser Application of a Hard Surface Alloy
,” UK Patent GB 2052566A.
3.
Agrawal
,
G.
,
Kar
,
A.
, and
Mazumder
,
J.
,
1993
, “
Theoretical Studies on Extended Solid Solubility and Non-Equilibrium Phase Diagram for Nb-Al Alloy Formed During Laser Cladding
,”
Scr. Metall. Mater.
,
28
(
11
), pp.
1453
1458
.10.1016/0956-716X(93)90498-H
4.
Chrysolurris
,
G.
,
Zannis
,
S.
,
Tsirbas
,
K.
, and
Lalas
,
C.
,
2002
, “
An Experimental Investigation of Laser Cladding
,”
CIRP Ann.-Manuf. Technol.
,
51
(
1
), pp.
145
148
.10.1016/S0007-8506(07)61486-3
5.
Lee
,
H. K.
,
2008
, “
Effects of the Cladding Parameters on the Deposition Efficiency in Pulsed Nd:YAG Laser Cladding
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
321
327
.10.1016/j.jmatprotec.2007.09.024
6.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review of Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.10.1115/1.4028540
7.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.10.1115/1.4028669
8.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Martinez
,
S.
,
Ukar
,
E.
, and
Figueras
,
J.
,
2011
, “
Evaluation of the Mechanical Properties of Inconel 718 Components Built by Laser Cladding
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
465
470
.10.1016/j.ijmachtools.2011.02.003
9.
Deus
,
A. M.
, and
Mazumder
,
J.
,
1996
, “
Two-Dimensional Thermo-Mechanical Finite Element Model for Laser Cladding
,”
Proceedings of the ICALEO ‘96
,
Orlando, FL
, pp.
B/174
B/183
.
10.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.10.1115/1.4028580
11.
Dai
,
K.
, and
Shaw
,
L.
,
2008
, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
,
49
(
20
), pp.
4171
4181
10.1016/S1359-6454(01)00312-3.
12.
Bendeich
,
P.
,
Alam
,
N.
,
Brandt
,
M.
,
Carr
,
D.
,
Short
,
K.
,
Blevins
,
R.
,
Curfs
,
C.
,
Kirstein
,
O.
,
Atkinson
,
G.
,
Holden
,
T.
, and
Rogge
,
R.
,
2006
, “
Residual Stress Measurements in Laser Clad Repaired Low Pressure Turbine Blades for the Power Industry
,”
Mater. Sci. Eng.: A
,
437
(
1
), pp.
70
74
.10.1016/j.msea.2006.04.065
13.
Kar
,
A.
, and
Mazumder
,
J.
,
1998
, “
One-Dimensional Finite-Medium Diffusion Model for Extended Solid Solution in Laser Cladding of Hf on Nickel
,”
Acta Metall.
,
36
(
3
), pp.
701
712
10.1016/0001-6160(88)90104-6.
14.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
,
1992
, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
,
23
(
5
), pp.
631
642
.10.1007/BF02649723
15.
Picasso
,
M.
,
Marsden
,
C. F.
,
Wagniere
,
J. D.
,
Frenk
,
A.
, and
Rappaz
,
M.
,
1994
, “
A Simple but Realistic Model for Laser Cladding
,”
Metall. Mater. Trans. B
,
25
(
2
), pp.
281
291
.10.1007/BF02665211
16.
Qi
,
H.
, and
Mazumder
,
J.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.10.1063/1.2209807
17.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
18.
Alemohammad
,
H.
,
Esmaeili
,
S.
, and
Toyserkani
,
E.
,
2007
, “
Deposition of Co–Ti Alloy on Mild Steel Substrate Using Laser Cladding
,”
Mater. Sci. Eng.: A
,
456
(
1–2
), pp.
156
161
.10.1016/j.msea.2006.12.054
19.
Massalski
,
T. B.
, and
Okamoto
,
H.
, eds.,
1990
,
Binary Alloy Phase Diagrams
, 2nd ed.,
ASM International, Materials Park
,
OH
.
20.
Paul
,
S.
,
Kaunain
,
A.
, and
Singh
,
R.
,
2014
, “
Residual Stress Modeling of Powder Injection Laser Surface Cladding for Die Repair Applications
,”
ASME
Paper No. MSEC2014-4029. 10.1115/MSEC2014-4029
21.
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2014
,
Thermo-Mechanical Modelling of Laser Cladding of CPM9V on H13 Tool Steel
,”
Proceedings of the 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014)
,
Guwahati, India
, Dec. 12–14, pp.
0541
0549
.
22.
Refractive Index
,” Accessed Apr. 22,
2014
, http://refractiveindex.info/Refractive index database/
23.
Cverna
,
F.
,
2005
,
ASM Ready Reference: Thermal Properties of Metals
,
ASM, Materials Park
,
OH
.
24.
ASM
,
1990
,
ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
ASM International, Novelty
,
OH
.
25.
Kim
,
J. D.
, and
Peng
,
Y.
,
2000
, “
Melt Pool Shape and Dilution of Laser Cladding With Wire Feeding
,”
J. Mater. Process. Technol.
,
104
(
3
), pp.
284
293
.10.1016/S0924-0136(00)00528-8
26.
Tanner
,
L. H.
,
1979
, “
The Spreading of Silicone Oil Drops on Horizontal Surfaces
,”
J. Phys. D: Appl. Phys.
,
12
(
9
), pp.
1473
1484
.10.1088/0022-3727/12/9/009
27.
de Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.10.1103/RevModPhys.57.827
28.
Han
,
X. J.
,
Wang
,
N.
, and
Wei
,
B.
,
2002
, “
Thermo-Physical Properties of Under-Cooled Liquid Cobalt
,”
Philos. Mag. Lett.
,
82
(
8
), pp.
451
459
.10.1080/09500830210144382
29.
Yao
,
W. J.
,
Han
,
X. J.
,
Chen
,
M.
,
Wei
,
B.
, and
Guo
,
Z. Y.
,
2002
, “
Surface Tension of Undercooled Liquid Cobalt
,”
J. Phys.: Condens. Matter
,
14
(
32
), pp.
7479
7485
10.1088/0953-8984/14/32/307.
You do not currently have access to this content.