Distinct element method is employed to simulate packing of spherical particles with different size distributions: equal-size, bimodal, and Gaussian. During the packing process, particles collide with their neighbors and bounce back and forth. Since the collision is inelastic, dissipative force exits, leading to energy loss in every collision. The interparticle contact force is calculated based on the nonlinear Hertz theory. The packing structures quantified by porosity and the coordination number under different particle size distributions are discussed.
Issue Section:
Research Papers
1.
Cundall
, P. A.
, and Strack
, O. D. L.
, 1979, “A Discrete Numerical Model for Granular Assemblies
,” Geotechnique
0016-8505, 29
, pp. 47
–65
.2.
Iglberger
, K.
, and Rüde
, U.
, 2009, “Massively Parallel Rigid Body Dynamics Simulations
,” Computer Science-Research and Development
1865-2034, 23
, pp. 159
–167
.3.
Remond
, S.
, and Gallias
, J. L.
, 2006, “Simulation of Periodic Mono-Sized Hard Sphere Systems Under Different Vibration Conditions and Resulting Compaction
,” Physica A
0378-4371, 369
, pp. 545
–561
.4.
James
W. L.
, and Gary
S. G.
, 2003, “Confined Granular Packings: Structure, Stress, and Forces
,” Phys. Rev. E
1063-651X, 67
, p. 041303
.5.
Silbert
, L. E.
, Ertaş
, D.
, Grest
, G. S.
, Halsey
, T. C.
, and Dov
, L.
, 2002, “Geometry of Frictionless and Frictional Sphere Packings
,” Phys. Rev. E
1063-651X, 65
, p. 031304
.6.
Cheng
, Y. F.
, Guo
, S. J.
, and Lai
, H. Y.
, 2000, “Dynamic Simulation of Random Packing of Spherical Particles
,” Powder Technol.
0032-5910, 107
, pp. 123
–130
.7.
Schwager
, T.
, and Poschel
, T.
, 1998, “Coefficient of Normal Restitution of Viscous Particles and Cooling Rate of Granular Gases
,” Phys. Rev. E
1063-651X, 57
, pp. 650
–654
.8.
Brilliantov
, N. V.
, Spahn
, F.
, and Hertzsch
, J. M.
, 1996, “Model for Collisions in Granular Gases
,” Phys. Rev. E
1063-651X, 53
, pp. 5382
–5392
.9.
McNamara
, S.
, and Falcon
, E.
, 2008, “Simulations of Dense Granular Gases Without Gravity With Impact-Velocity-Dependent Restitution Coefficient
,” Powder Technol.
0032-5910, 182
, pp. 232
–240
.10.
Tighe
, B. P.
, and Socolar
, J. E. S.
, 2008, “Nonlinear Elastic Stress Response in Granular Packings
,” Phys. Rev. E
1063-651X, 77
, p. 031303
.11.
Johnson
, K. L.
, 1985, Contact Mechanics
, Cambridge University Press
, Cambridge, UK
.12.
Siiriä
, S.
, and Yliruusi
, J.
, 2007, “Particle Packing Simulations Based on Newtonian Mechanics
,” Powder Technol.
0032-5910, 174
, pp. 82
–92
.13.
Mao
, K.
, Wang
, M.
, Xu
, Z.
, and Chen
, T.
, 2004, “DEM Simulation of Particle Damping
,” Powder Technol.
0032-5910, 142
, pp. 154
–165
.14.
Zhao
, X. L.
, Li
, S. Q.
, Liu
, G. Q.
, Yao
, Q.
, and Marshall
, J. S.
, 2008, “DEM Simulation of the Particle Dynamics in Two-Dimensional Spouted Beds
,” Powder Technol.
0032-5910, 184
, pp. 205
–213
.15.
He
, D.
, and Ekere
, N. N.
, 1998, “Computer Simulation of Powder Compaction of Spherical Particles
,” J. Mater. Sci. Lett.
0261-8028, 17
, pp. 1723
–1725
.16.
Jodrey
, W. S.
, and Tory
, E. M.
, 1985, “Computer Simulation of Isotropic, Homogeneous, Dense Random Packing of Equal Hard Spheres
,” Phys. Rev. A
1050-2947, 32
, pp. 2347
–2351
.17.
Jodrey
, W. S.
, and Tory
, E. M.
, 1981, “Computer Simulation of Isotropic, Homogeneous, Dense Random Packing of Equal Spheres
,” Powder Technol.
0032-5910, 30
, pp. 111
–118
.18.
Shi
, Y.
, and Zhang
, Y.
, 2008, “Simulation of Random Packing of Spherical Particles With Different Size Distributions
,” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 92
, pp. 621
–626
.19.
Zhou
, J.
, Zhang
, Y.
, and Chen
, J. K.
, 2009, “Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Addictive Manufacturing
,” ASME J. Manuf. Sci. Eng.
1087-1357, 131
, p. 031004
.20.
Rahaman
, M. N.
, 1995, Ceramic Processing and Sinstering
, Marcel Dekker
, New York
.21.
Haile
, J. M.
, 1992, Molecular Dynamics Simulation: Elementary Method
, Wiley
, New York
.22.
Rapaport
, D. C.
, 1995, The Art of Molecular Dynamics Simulation
, Cambridge University Press
, Cambridge, UK
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.