Rotary ultrasonic machining (RUM) is one of the cost-effective machining methods for machining difficult to process material. It is a hybrid machining process that combines the material removal mechanisms of diamond grinding with ultrasonic machining. However, due to the lack of understanding of the mechanisms of these operations, models for these machining processes are difficult to establish. In this paper, the support vector fuzzy adaptive network (SVFAN), a parameter free nonlinear regression technique, is used to model the material removal rate in RUM. The SVFAN retains the advantages of both the fuzzy adaptive networks and the support vector machines. The former possesses the linguistic representation ability and the latter is a very effective learning machine. The results are compared with that obtained by the use of fuzzy adaptive network and it is shown that the combined approach is a more effective algorithm for the modeling of complex manufacturing processes.

1.
Hu
,
P.
,
Zhang
,
J. M.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2002, “
Modeling of Material Removal Rate in Rotary Ultrasonic Machining: Designed Experiments
,”
J. Mater. Process. Technol.
0924-0136,
129
(
1–3
), pp.
339
344
.
2.
Pei
,
Z. J.
,
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1995, “
A Mechanistic Approach to Prediction of Material Removal Rates in Rotary Ultrasonic Machining
,”
ASME J. Eng. Ind.
0022-0817,
117
(
2
), pp.
142
151
.
3.
Prabhakar
,
D.
,
Pei
,
Z. J.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1993, “
A Theoretical Model for Predicting Material Removal Rates in Rotary Ultrasonic Machining
,”
Trans. NAMRI/SME
1047-3025,
21
, pp.
167
172
.
4.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
, 1998, “
Modeling of Ductile-Mode Material Removal in Ratory Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
1399
1418
.
5.
Zhang
,
Q. H.
,
Wu
,
C. L.
,
Sun
,
J. L.
, and
Jia
,
Z. X.
, 2000, “
Mechanism of Material Removal in Ultrasonic Drilling of Engineering Ceramics
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
214
, pp.
805
810
.
6.
Ya
,
G.
,
Qin
,
H. W.
,
Yang
,
S. C.
, and
Xu
,
Y. W.
, 2002, “
Analysis of the Rotary Ultrasonic Machining Mechanism
,”
J. Mater. Process. Technol.
0924-0136,
129
, pp
182
185
.
7.
Jiao
,
Y.
,
Pei
,
Z. J.
,
Lei
,
S.
,
Lee
,
E. S.
, and
Fisher
,
G.
, 2005, “
Fuzzy Adaptive Networks in Machining Process Modeling: Dimensional Error Prediction for Turning Operations
,”
Int. J. Prod. Res.
0020-7543,
43
, pp.
2931
2948
.
8.
Shen
,
J. D.
,
Pei
,
Z. J.
,
Lee
,
E. S.
, and
Fisher
,
G.
, 2006, “
Modeling and Analysis of Waviness Reduction in Soft-Pad Grinding of Wire-Sawn Silicon Wafers by Support Vector Regression
,”
Int. J. Prod. Res.
0020-7543,
44
, pp.
2605
2623
.
9.
Jiao
,
Y.
,
Pei
,
Z. J.
,
Lei
,
S.
,
Lee
,
E. S.
, and
Fisher
,
G.
, 2006, “
Fuzzy Adaptive Networks for Waviness Removal in Grinding of Wire-Sawn Silicon Wafers
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
938
943
.
10.
Cheng
,
C.-B.
, and
Lee
,
E. S.
, 1999, “
Applying Fuzzy Adaptive Network to Fuzzy Regression
,”
Comput. Math. Appl.
0898-1221,
38
, pp.
123
140
.
11.
Jang
,
J.
, 1993, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
(
3
), pp.
665
685
.
12.
Jiao
,
Y.
, 2002, “
Fuzzy Adaptive Networks and Applications to Humanistic Systems
,” Ph.D. thesis, Kansas State University, Manhattan, KS.
13.
Vapnik
,
V. N.
, 1995,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
14.
Vapnik
,
V. N.
, 1999, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Netw.
1045-9227,
10
(
5
), pp.
988
999
.
15.
Kecman
,
V.
, 2001,
Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models
,
MIT Press
,
Cambridge, MA
.
16.
Smola
,
A. J.
, 1998, “
Learning With Kernels
,” Ph.D. thesis, GMD, Birlinghoven, Germany.
17.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2002, “
Support Vector Machines Model for Classification of Thermal Error in Machine Tools
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
(
2
), pp.
114
120
.
18.
Chinnam
,
R.
, 2002, “
Support Vector Machines for Recognizing Shifts in Correlated and Other Manufacturing Processes
,”
Int. J. Prod. Res.
0020-7543,
40
(
17
), pp.
4449
4466
.
19.
Kim
,
J.
, and
Won
,
S.
, 2002, “
New Fuzzy Inference System Using a Support Vector Machine
,”
Proceedings of the 41st IEEE Conference on Decision and Control
,
Las Vegas, NV
.
20.
Chiang
,
J. H.
, and
Hao
,
P. Y.
, 2004, “
Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A New Approach
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
12
, pp.
1
12
.
21.
Hong
,
D. H.
, and
Hwang
,
C. H.
, 2003, “
Support Vector Fuzzy Regression Machines
,”
Fuzzy Sets Syst.
0165-0114,
138
, pp.
271
281
.
22.
Chen
,
J. H.
, and
Chen
,
C. S.
, 2002, “
Fuzzy Kernel Percetron
,”
IEEE Trans. Neural Netw.
1045-9227,
13
, pp.
1364
1373
.
23.
Shen
,
J. D.
, 2005, “
Fusing of Support Vector Machines and Soft computing for Pattern recognition and Regression
,” Ph.D. thesis, Kansas State University, Manhattan, KS.
24.
Lin
,
C. T.
,
Yeh
,
C. M.
,
Liang
,
S. F.
,
Chung
,
J. F.
, and
Kumar
,
N.
, 2006, “
Support Vector Based Fuzzy Neural Network for Pattern Classification
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
14
, pp.
31
41
.
25.
Li
,
Z. C.
,
Jiao
,
Y.
,
Deines
,
T. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2005, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Design Experiments
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1402
1411
.
26.
Legge
,
P.
, 1964, “
Ultrasonic Drilling of Ceramics
,”
Ind. Diamond Rev.
0019-8145,
24
, pp.
20
24
.
27.
Legge
,
P.
, 1966, “
Machining Without Abrasive Slurry
,”
Ultrasonics
0041-624X,
4
, pp.
157
162
.
28.
Spur
,
G.
, and
Holl
,
S. E.
, 1997, “
Material Removal Mechanisms During Ultrasonic Assisted Grinding
,”
Annals of the German Academic Society for Production Engineering
,
4
(
2
), pp.
9
14
.
29.
Jang
,
J.-S. R.
,
Sun
,
C.-T.
, and
Mizutani
,
E.
, 1997,
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
,
Prentice-Hall
,
Upper Saddle River, NJ
.
30.
Takagi
,
Y.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and Its Application to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
15
(
1
), pp.
116
132
.
31.
Cortes
,
C.
, and
Vapnik
,
V.
, 1995, “
Support-Vector Networks
,”
Mach. Learn.
0885-6125,
20
, pp.
273
297
.
32.
Hearst
,
M.
,
Schölkopf
,
B.
,
Dumais
,
S.
,
Osuna
,
E.
, and
Platt
,
J.
, 1998, “
Trends and Controversies—Support Vector Machines
,”
IEEE Intell. Syst.
1094-7167,
13
(
4
), pp.
18
28
.
33.
Smola
,
A. J.
,
Bartlett
,
P. L.
,
Scholkopf
,
B.
, and
Schuurmans
,
D.
, 2000,
Advances in Large Margin Classifiers
,
The MIT Press
,
Cambridge, MA
.
34.
Kim
,
K.
,
Jung
,
K.
,
Park
,
S.
, and
Kim
,
H.
, 2002, “
Support Vector Machines for Texture Classification
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
24
(
11
), pp.
1542
1550
.
35.
Jang
,
J. S. R.
, and
Sun
,
C. T.
, 1993, “
Functional Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
4
(
1
), pp.
156
159
.
36.
Li
,
Z. C.
, 2006, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Material Removal Rate Mechanism and Control of Machining-Induced Edge Chipping
,” Ph.D. thesis, Kansas State University, Manhattan, KS.
37.
Cherkassky
,
V.
, and
Ma
,
Y.
, 2004, “
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
,”
Neural Networks
0893-6080,
17
(
1
), pp.
113
126
.
38.
Jiao
,
Y.
,
Hu
,
P.
,
Pei
,
Z. J.
,
Lei
,
S.
, and
Lee
,
E. S.
, 2003, “
Application of Fuzzy Adaptive Networks in Manufacturing: Prediction of Material Removal Rate in Rotary Ultrasonic Machining
,”
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life—Proceedings of the Artificial Neural Networks in Engineering Conference
,
St. Louis, MO
, Vol.
13
, pp.
491
496
.
You do not currently have access to this content.