For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/mesoscale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the feature/specimen size effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with three separate experiments obtained from previous research: a simple compression with a round specimen, a simple tension with a round specimen, and a simple tension in sheet metal. The predicted results had a very good agreement with the experiments. Quantification of the miniaturization effect has been achieved by introducing two parameters, α and β, which can be determined by the scaling parameter n, to the Hall–Petch equation. The scaling model offers a simple way to model the size effect down to length scales of a couple of grains and to extend the use of continuum plasticity theories to micro/mesolength scales.

1.
Kim
,
C.-J.
, 2004, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
710
718
.
2.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part 1: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
685
694
.
3.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2004, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part 2: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
695
705
.
4.
Engel
,
U.
, and
Eckstein
,
R.
, 2002, “
Microforming-from Basic Research to Its Realization
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
35
44
.
5.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
, 2001, “
Microforming
,”
CIRP Ann.
0007-8506,
50
(
2
), pp.
445
462
.
6.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H.
, and
Liu
,
W. K.
, 2004, “
Microforming-Experimental Investigation of the Extrusion Process for Micropins and Its Numerical Simulation Using Rkem
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
642
652
.
7.
Krishnan
,
N.
,
Dohda
,
K.
, and
Cao
,
J.
, 2005, “
Microforming: Study of Friction Conditions and the Impact of Low Friction/High-Strength Die Coatings on the Extrusion of Micropins
,”
Proceedings of IMECE 2005: ASME International Mechanical Engineering Conference and Exposition
, IMECE05-81490, Orlando, FL., 16-1, pp.
331
340
.
8.
Cao
,
J.
, and
Krishnan
,
N.
, 2005, “
Recent Advances in Microforming: Science, Technology and Applications
,”
Proceedings Materials Science and Technology 2005, MS and T’05
, Pittsburgh, PA, pp.
225
234
.
9.
Ike
,
H.
, 2003, “
Surface Deformation Vs. Bulk Plastic Deformation-A Key for Microscopic Control of Surfaces in Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
138
, pp.
250
255
.
10.
Ike
,
H.
, 1998, “
Coining Process as a Means of Controlling Surface Microgeometry
,”
J. Mater. Process. Technol.
0924-0136,
80–81
, pp.
101
107
.
11.
Kim
,
G.-Y.
,
Koc
,
M.
, and
Ni
,
J.
, 2006, “
Investigation on Coining of Micro-Features Using Pure Copper
,”
ASME International Conference on Manufacturing Science and Engineering
, Ypsilanti, MI.
12.
Saotome
,
Y.
,
Yasuda
,
K.
, and
Kaga
,
H.
, 2001, “
Microdeep Drawability of Very Thin Sheet Steels
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
641
647
.
13.
Lalli
,
L. A.
, 1998, “
Multiscale Modeling for Light Metals Alloy Development
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
3
(
3
), pp.
283
287
.
14.
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
, and
Plimpton
,
S. J.
, 2001, “
Computational Nanoscale Plasticity Simulations Using Embedded Atom Potentials
,”
Theor. Appl. Fract. Mech.
0167-8442,
37
, pp.
49
98
.
15.
Engel
,
U.
, and
Egerer
,
E.
, 2003, “
Basic Research on Cold and Warm Forging of Microparts
,”
Key Eng. Mater.
1013-9826,
233–236
, pp.
449
456
.
16.
Tiesler
,
N.
, and
Engel
,
U.
, 2000, “
Microforming-Effects of Miniaturization
,”
Proceedings of the 8th International Conference on Metal Forming
, A.A. Balkema, Rotterdam, The Netherlands, pp.
355
360
.
17.
Aifantis
,
E. C.
, 2003, “
Update on a Class of Gradient Theories
,”
Mech. Mater.
0167-6636,
35
, pp.
259
280
.
18.
Frantziskonis
,
G. N.
,
Konstantinidis
,
A. A.
, and
Aifantis
,
E. C.
, 2001, “
Scale-Dependent Constitutive Relations and the Role of Scale on Nominal Properties
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
925
936
.
19.
Shu
,
J. Y.
, and
Fleck
,
N. A.
, 1998, “
The Prediction of a Size Effect in Micro-Indentation
,”
Int. J. Solids Struct.
0020-7683,
35
(
13
), pp.
1363
1383
.
20.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1997, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
0065-2156,
33
, pp.
296
358
.
21.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
(
3
), pp.
411
425
.
22.
Miyazaki
,
S.
,
Fujita
,
H.
, and
Hiraoka
,
H.
, 1979, “
Effect of Specimen Size on the Flow Stress of Rod Specimens of Polycrystalline Cu-Al Alloy
,”
Scr. Metall.
0036-9748,
13
, pp.
447
449
.
23.
Miyazaki
,
S.
,
Shibata
,
K.
, and
Fujita
,
H.
, 1978, “
Effect of Specimen Thickness on Mechanical Properties of Polycrystalline Aggregates with Various Grain Sizes
,”
Acta Metall.
0001-6160,
27
, pp.
855
862
.
24.
Engel
,
U.
, and
Messner
,
A.
, 1998, “
Numerical Simulation of Metal Forming Processes for the Production of Microparts
,”
Wire
0043-5996,
48
(
2
), pp.
94
100
.
25.
Kals
,
T. A.
, and
Eckstein
,
R.
, 2000, “
Miniaturization in Sheet Metal Working
,”
J. Mater. Process. Technol.
0924-0136,
103
, pp.
95
101
.
26.
Nakamachi
,
E.
,
Hiraiwa
,
K.
,
Morimoto
,
H.
, and
Harimoto
,
M.
, 2000, “
Elastic/Crystalline Viscoplastic Finite Element Analyses of Single- and Poly-Crystal Sheet Deformations and Their Experimental Verification
,”
Int. J. Plast.
0749-6419,
16
, pp.
1419
1441
.
27.
Armstrong
,
R. W.
, 1961, “
On Size Effects in Polycrystal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
9
pp.
196
199
.
28.
Hall
,
E. O.
, 1951, “
Deformation and Ageing of Mild Steel
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
64
(
381
), pp.
747
753
.
29.
Petch
,
N. J.
, 1953, “
Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst., London
0021-1567,
174
, pp.
25
28
.
30.
Armstrong
,
R. W.
,
Codd
,
I.
,
Douthwaite
,
R. M.
, and
Petch
,
N. J.
, 1962, “
Plastic Deformation of Polycrystalline Aggregates
,”
Philos. Mag.
0031-8086,
7
(
73
), pp.
45
58
.
31.
Armstrong
,
R. W.
, 1983,
The Yield and Flow Stress Dependence on Polycrystal Grain Size
,
Applied Science Publishers
, London, pp.
1
31
.
32.
Wei
,
C.
,
Lin
,
R.
,
Qian
,
G.
, and
Hsiao
,
J. M.
, 1991, “
Computer Simulation of the Effect of Grain Size on the Properties of Polycrystalline Specimens by Finite Element Method
,”
Acta Metall. Mater.
0956-7151,
39
(
8
), pp.
2051
2057
.
33.
Al-Haidary
,
J. T.
,
Petch
,
N. J.
, and
de los Rios
,
E. R.
, 1983, “
Plastic Deformation of Polycrystals-1. Aluminum Between Room Temperature and 400 Degree C
,”
Philos. Mag. A
0141-8610,
47
(
6
), pp.
869
890
.
34.
Mecking
,
H.
, 1980, “
Deformation of Polycrystals
,”
Strength of Met and Alloys, Proceedings of the 5th International Conference
,
Pergamon Press
,
Aachen, Germany
, pp.
1573
1594
.
35.
Clausen
,
B.
,
Lorentzen
,
T.
, and
Leffers
,
T.
, 1998, “
Self-Consistent Modelling of the Plastic Deformation of F.C.C. Polycrystals and Its Implications for Diffraction Measurements of Internal Stresses
,”
Acta Mater.
1359-6454,
46
(
9
), pp.
3087
3098
.
36.
Hansen
,
N.
, 1977, “
The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature
,”
Acta Metall.
0001-6160,
25
, pp.
863
869
.
37.
Janssen
,
P. J. M.
,
Keijser
,
T. H.
, and
Geers
,
M. G. D.
, 2006, “
An Experimental Assessment of Grain Size Effects in the Uniaxial Straining of Thin Al Sheet with a Few Grains across the Thickness
,”
Mater. Sci. Eng., A
0921-5093,
419
, pp.
238
248
.
38.
Carreker
,
R.
, and
Hibbard
,
W.
, 1957, “
Tensile Deformation of Aluminum as a Function of Temperature, Strain Rate and Grain Size
,”
Trans. AIME
0096-4778,
209
, pp.
1157
1163
.
39.
Fleischer
,
R.
, and
Hosford
,
W.
, 1961, “
Easy Glide and Grain Boundary Effects in Polycrystalline Aluminum
,”
Trans. Metall. Soc. AIME
0543-5722,
221
(
2
), pp.
244
247
.
40.
Gerberich
,
W. W.
,
Tymiak
,
N. I.
,
Grunlan
,
J. C.
,
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
, 2002, “
Interpretation of Indentation Size Effects
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
433
442
.
41.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
, 1994, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
0956-7151,
42
(
2
), pp.
475
487
.
42.
Han
,
C. S.
,
Hartmaier
,
A.
,
Gao
,
H.
, and
Huang
,
Y.
, 2006, “
Discrete Dislocation Dynamics Simulations of Surface Induced Size Effects in Plasticity
,”
Mater. Sci. Eng., A
0921-5093,
415
, pp.
225
233
.
43.
Lorentzen
,
T.
,
Leffers
,
T.
, and
Clausen
,
B.
, 1998, “
Polycrystal Models and Intergranular Stresses
,”
Proceedings International Symposium on Metallic Material Science
, Denmark, pp.
345
354
.
44.
Meakin
,
J. D.
, and
Petch
,
N. J.
, 1974, “
Strian-Hardening of Polycrystals: The Alpha-Brass
,”
Philos. Mag.
0031-8086,
29
(
5
), pp.
1149
1156
.
45.
Schmid
,
E.
, and
Boas
,
I. W.
, 1968,
Plasticity of Crystals with Special Reference to Metals
,
Chapman & Hall Ltd.
, London.
You do not currently have access to this content.