The 5-axis layered manufacturing technology facilitates fabrication of a part with overhanging features without the use of supports, thereby making a direct-to-use part from the layered manufacturing technology a reality. In this paper a direct slicing procedure for a CAD model, a crucial process-planning task for the 5-axis laser aided DMD process is described. The neutral exchange format IGES is used as the slice format. The machine G and M codes for a CNC 5-axis laser aided DMD machine are generated from the slice format and the deposition process is simulated. Implemented examples are included to explain the slicing procedure.
Issue Section:
Technical Briefs
1.
Milewski
, J. O.
, Lewis
, G. K.
, Thoma
, D. J.
, Keel
, G. I.
, Nemec
, R. B.
, and Reinert
, R. A.
, 1998
, “Directed Light Fabrication of a Solid Metal Hemisphere Using 5-Axis Powder Deposition
,” J. Mater. Process. Technol.
, 75
, pp. 165
–172
.2.
Milewski
, J. O.
, Lewis
, G. K.
, Fonseca
, J.
, and Nemec
, R. B.
, 2000
, “Laser Powder Deposition of a Near Net Shape Injection Mold Core—A Case Study
,” Mater. Manuf. Processes
, 15
(2
), pp. 247
–258
.3.
Griffith, M. L., Keicher, D. M., Atwood, C. L., Romero, J. A., Smugeresky, J. E., Harwell, L. D., and Greene, D. L., 1996, “Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS),” Solid Freeform Fabrication Proceedings, pp. 125–132.
4.
Klingbei
, N. W.
, Beuth
, J. L.
, Chin
, R. K.
, and Amon
, C. H.
, 2002
, “Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,” Int. J. Mech. Sci.
, 44
(1
), pp. 57
–77
.5.
Mazumder, J., Koch, J., Nagarathnam, J., and Choi, J., 1996, “Rapid Manufacturing by Laser Aided Direct Deposition of Metals,” Advances in Powder Metallurgy and Particulate Materials, Part 15, MPIF, pp. 107–118.
6.
Choi, J., 2002, “Process and Properties Control in Laser Aided Direct Metal/Materials Deposition Process,” Proceedings of IMECE’02, ASME, IMECE2002-MED-33568.
7.
Mazumder
, J.
, 2000
, “A Crystal Ball View of Direct Metal Deposition
,” JOM
, 52
(12
), pp. 28
–29
.8.
Shin
, K. H.
, Natu
, H.
, Dutta
, D.
, and Mazumder
, J.
, 2003
, “A Method for the Design and Fabrication of Heterogeneous Objects
,” Mater. Des.
, 24
(5
), pp. 339
–353
.9.
Alexander
, P.
, Allen
, S.
, and Dutta
, D.
, 1998
, “Part Orientation and Build Cost Determination in Layered Manufacturing
,” Comput.-Aided Des.
, 30
(5
), pp. 343
–356
.10.
Masood
, S. H.
, Rattanawong
, W.
, and Iovenitti
, P.
, 2003
, “A Generic Algorithm for a Best Part Orientation System for Complex Parts in Rapid Prototyping
,” Tetrahedron
, 139
(1–3
), pp. 110
–116
.11.
Kumar
, M.
, and Choudhury
, A. R.
, 2002
, “Adaptive Slicing with Cubic Patch Approximation
,” Rapid Prototyping Journal
, 8
(4
), pp. 224
–232
.12.
Pandey
, P. M.
, Reddy
, N. V.
, and Dhande
, S. G.
, 2003
, “Real Time Adaptive Slicing for Fused Deposition Modeling
,” Int. J. Mach. Tools Manuf.
, 43
(1
), pp. 61
–71
.13.
Elber
, G.
, 2001
, “Curve Evaluation and Interrogation on Surfaces
,” Graph. Models Image Process.
, 63
(3
), pp. 197
–210
.14.
Singh, P., and Dutta, D., 2000, “Multi-direction Slicing for Layered Manufacturing,” Proceedings of DETC’00, ASME, CIE-14626.
15.
Kulkarni
, P.
, and Dutta
, D.
, 1996
, “An Accurate Slicing Procedure for Layered Manufacturing
,” Comput.-Aided Des.
, 28
(9
), pp. 683
–697
.16.
Dolenc
, A.
, and Ma¨kela¨
, I.
, 1994
, “Slicing Procedures for Layered Manufacturing Techniques
,” Comput.-Aided Des.
, 26
(2
), pp. 119
–126
.17.
Milewski, J. O., Reinert, R., and Guggisberg, A., 1994, “Use of Pro/Manufacturing and NC Post Plus to Create Numerical Control Sequences for the Directed Light Fabrication Process,” Unclassified Internal Report, Los Alamos National Laboratory.
Copyright © 2004
by ASME
You do not currently have access to this content.