Abstract

Wire arc additive manufacturing (WAAM) is a metal 3D printing technology that rapidly prototypes by depositing molten metal wire onto a substrate. Traditionally, WAAM has relied on the open-loop control with carefully tuned parameters, a process that can be time-consuming and often results in inconsistent performance. Although laser line scanners and other 3D scanning techniques have been used to ensure geometric fidelity, they typically provide feedback through layer-by-layer scans, leaving imperfections from arc striking and extinguishing. This paper introduces a novel approach that incorporates infrared (IR) camera thermography to achieve more consistent and reliable WAAM printing with real-time feedback. By using IR live streaming to close the loop with in-layer updates, we demonstrate how this feedback mechanism can enhance control over bead width consistency and wire stick-out length, ultimately leading to higher-quality metal 3D-printed structures. Compared with open-loop preset constant welding parameters on a triangular wall geometry, our IR-guided WAAM process achieves 49% bead width variance reduction and 95% wire stick-out length tracking improvement.

References

1.
Mohd Mansor
,
M. S.
,
Raja
,
S.
,
Yusof
,
F.
,
Muhamad
,
M. R.
,
Manurung
,
Y. H.
,
Adenan
,
M. S.
,
Hussein
,
N. I. S.
, and
Ren
,
J.
,
2024
, “
Integrated Approach to Wire Arc Additive Manufacturing (WAAM) Optimization: Harnessing the Synergy of Process Parameters and Deposition Strategies
,”
J. Mater. Res. Technol.
,
30
, pp.
2478
2499
.
2.
Huang
,
Y.
,
Yang
,
L.
, and
Xin
,
Q.
,
2023
, “
Novel Geometrical Model and Design Mechanical Parameters for CMT-WAAM Stainless Steel
,”
J. Constr. Steel Res.
,
210
, p.
108071
.
3.
Bento
,
J. B.
,
Wang
,
C.
,
Ding
,
J.
, and
Williams
,
S.
,
2023
, “
Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing
,”
Metals
,
13
(
8
), p.
1334
.
4.
Xia
,
C.
,
Pan
,
Z.
,
Zhang
,
S.
,
Polden
,
J.
,
Wang
,
L.
,
Li
,
H.
,
Xu
,
Y.
, and
Chen
,
S.
,
2020
, “
Model Predictive Control of Layer Width in Wire Arc Additive Manufacturing
,”
J. Manuf. Processes
,
58
, pp.
179
186
.
5.
Li
,
Y.
,
Li
,
X.
,
Zhang
,
G.
,
Horváth
,
I.
, and
Han
,
Q.
,
2021
, “
Interlayer Closed-Loop Control of Forming Geometries for Wire and Arc Additive Manufacturing Based on Fuzzy-Logic Inference
,”
J. Manuf. Processes
,
63
, pp.
35
47
.
6.
Lu
,
C.-L.
,
He
,
H.
,
Ren
,
J.
,
Dhar
,
J.
,
Saunders
,
G.
,
Julius
,
A.
,
Samuel
,
J.
, and
Wen
,
J. T.
,
2025
, “
Multi-Robot Scan-n-Print for Wire Arc Additive Manufacturing
,”
ASME Lett. Translational Rob.
, pp.
1
9
.
7.
Karmuhilan
,
M.
, and
Sood
,
A. K.
,
2018
, “
Intelligent Process Model for Bead Geometry Prediction in WAAM
,”
Mater. Today: Proc.
,
5
(
11, Part 3
), pp.
24005
24013
.
8.
Tang
,
S.
,
Wang
,
G.
,
Song
,
H.
,
Li
,
R.
, and
Zhang
,
H.
,
2021
, “
A Novel Method of Bead Modeling and Control for Wire and Arc Additive Manufacturing
,”
Rapid Prototyp. J.
,
27
(
2
), pp.
311
320
.
9.
Tang
,
S.
,
Wang
,
G.
,
Huang
,
C.
,
Li
,
R.
,
Zhou
,
S.
, and
Zhang
,
H.
,
2020
, “
Investigation, Modeling and Optimization of Abnormal Areas of Weld Beads in Wire and Arc Additive Manufacturing
,”
Rapid Prototyp. J.
,
26
(
7
), pp.
1183
1195
.
10.
Oh
,
W.-J.
,
Lee
,
C.-M.
, and
Kim
,
D.-H.
,
2022
, “
Prediction of Deposition Bead Geometry in Wire Arc Additive Manufacturing Using Machine Learning
,”
J. Mater. Res. Technol.
,
20
, pp.
4283
4296
.
11.
Marshall
,
C.
,
Parker
,
T.
, and
White
,
T.
,
1995
, “
Infrared Sensor Technology
,”
Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society
,
Montreal, QC, Canada
,
Sept. 20
, Vol. 2, pp.
1715
1716
.
12.
Perumal
,
K. A.
,
Ali
,
M. A. M.
, and
Yahya
,
Z. H.
,
2019
, “
Fire Fighter Robot With Night Vision Camera
,”
International Colloquium on Signal Processing & its Applications (CSPA)
,
Penang, Malaysia
,
Mar. 8
, pp.
270
274
.
13.
Jiang
,
Z.
,
Ma
,
Y.
,
Zhang
,
J.
,
Mao
,
X.
,
Du
,
K.
, and
Zhang
,
L.
,
2022
, “
Research on Thermal Infrared Remote Sensing Detection of Oil Spill on Sea Surface
,”
International Geoscience and Remote Sensing Symposium
,
Kuala Lumpur, Malaysia
,
July 17
, pp.
7970
7973
.
14.
Walker
,
H. J.
,
2000
, “
A Brief History of Infrared Astronomy
,”
Astronomy Geophys.
,
41
(
5
), pp.
510
513
.
15.
Guo
,
S.
,
Wang
,
D.
,
Feng
,
Z.
, and
Guo
,
W.
,
2022
, “
UIR-NET: Object Detection in Infrared Imaging of Thermomechanical Processes in Automotive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
4
), pp.
3276
3287
.
16.
Nagarajan
,
S.
,
Chen
,
W.
, and
Chin
,
B.
,
1989
, “
Infrared Sensing for Adaptive Arc Welding
,”
Welding J.
,
68
(
11
), pp.
462
466
.
17.
Vasudevan
,
M.
,
Chandrasekhar
,
N.
,
Maduraimuthu
,
V.
,
Bhaduri
,
A. K.
, and
Raj
,
B.
,
2011
, “
Real-Time Monitoring of Weld Pool During GTAW Using Infra-Red Thermography and Analysis of Infra-Red Thermal Images
,”
Welding World
,
55
(
7
), pp.
83
89
.
18.
Chandrasekhar
,
N.
,
Vasudevan
,
M.
,
Bhaduri
,
A. K.
, and
Jayakumar
,
T.
,
2015
, “
Intelligent Modeling for Estimating Weld Bead Width and Depth of Penetration From Infra-Red Thermal Images of the Weld Pool
,”
J. Intell. Manuf.
,
26
(
1
), pp.
59
71
.
19.
Vemanaboina
,
H.
,
Edison
,
G.
, and
Akella
,
S.
,
2019
, “
Weld Bead Temperature and Residual Stresses Evaluations in Multipass Dissimilar INCONEL625 and SS316L by GTAW Using IR Thermography and X-ray Diffraction Techniques
,”
Mater. Res. Express
,
6
(
9
), p.
0965a9
.
20.
Alfaro
,
S. C. A.
, and
Franco
,
F. D.
,
2010
, “
Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in Gtaw
,”
Sensors
,
10
(
6
), pp.
5962
5974
.
21.
Dellarre
,
A.
,
Béraud
,
N.
,
Tardif
,
N.
,
Vignat
,
F.
,
Villeneuve
,
F.
, and
Limousin
,
M.
,
2023
, “
Qualify a NIR Camera to Detect Thermal Deviation During Aluminum WAAM
,”
Int. J. Adv. Manuf. Technol.
,
127
(
1
), pp.
625
634
.
22.
Vazquez
,
L.
,
Iturrioz
,
A.
,
Lopez de Uralde
,
P.
, and
Alvarez
,
P.
,
2023
, “
Maximising the Deposition Rate of 5356 Aluminium Alloy by CMT-Twin-Based WAAM While Reducing Segregation-Related Problems by Local IR Thermography
,”
Metals
,
13
(
11
), p.
1890
.
23.
He
,
H.
,
Lu
,
C.-l.
,
Wen
,
Y.
,
Saunders
,
G.
,
Yang
,
P.
,
Schoonover
,
J.
,
Wason
,
J.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2023
, “
High-Speed High-Accuracy Spatial Curve Tracking Using Motion Primitives in Industrial Robots
,”
International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29
, pp.
12289
12295
.
24.
He
,
H.
,
Lu
,
C.-L.
,
Saunders
,
G.
,
Wason
,
J.
,
Yang
,
P.
,
Schoonover
,
J.
,
Ajdelsztajn
,
L.
,
Paternain
,
S.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2024
, “
Fast and Accurate Relative Motion Tracking for Dual Industrial Robots
,”
IEEE Rob. Autom. Lett.
,
9
(
11
), pp.
10153
10160
.
25.
Yousef
,
S. G.
,
Sperfeld
,
P.
, and
Metzdorf
,
J.
,
2000
, “
Measurement and Calculation of the Emissivity of a High-Temperature Black Body
,”
Metrologia
,
37
(
5
), p.
365
.
26.
Valiorgue
,
F.
,
Brosse
,
A.
,
Naisson
,
P.
,
Rech
,
J.
,
Hamdi
,
H.
, and
Bergheau
,
J. M.
,
2013
, “
Emissivity Calibration for Temperatures Measurement Using Thermography in the Context of Machining
,”
Appl. Therm. Eng.
,
58
(
1
), pp.
321
326
.
27.
He
,
H.
,
Lu
,
C.-L.
,
Ren
,
J.
,
Dhar
,
J.
,
Saunders
,
G.
,
Wason
,
J.
,
Samuel
,
J.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2024
, “Open-Source Software Architecture for Multi-robot Wire Arc Additive Manufacturing (WAAM).”
28.
Yu
,
Y.
,
Xiong
,
J.
,
Chen
,
Y.
, and
Zhao
,
H.
,
2023
, “
Process Stability Control of Corner Structures in Robotic Gas Tungsten Arc Additive Manufacturing Via Arc Sensing
,”
J. Manuf. Processes
,
101
, pp.
156
170
.
29.
Hölscher
,
L. V.
,
Hassel
,
T.
, and
Maier
,
H. J.
,
2023
, “
Development and Evaluation of a Closed-Loop Z-Axis Control Strategy for Wire-and-Arc-Additive Manufacturing Using the Process Signal
,”
Int. J. Adv. Manuf. Technol.
,
128
(
3
), pp.
1725
1739
.
30.
Reis
,
D.
,
Kupec
,
J.
,
Hong
,
J.
, and
Daoudi
,
A.
,
2024
, “Real-Time Flying Object Detection With YOLOv8.”
31.
Diwan
,
T.
,
Anirudh
,
G.
, and
Tembhurne
,
J. V.
,
2023
, “
Object Detection Using Yolo: Challenges, Architectural Successors, Datasets and Applications
,”
Multimedia Tools Appl.
,
82
(
6
), pp.
9243
9275
.
32.
Rangel
,
J.
,
Soldan
,
S.
, and
Kroll
,
A.
,
2014
, “
3D Thermal Imaging: Fusion of Thermography and Depth Cameras
,”
International Conference on Quantitative InfraRed Thermography
,
Bordeaux, France
,
July 7
, pp.
1
11
.
33.
Bradski
,
G.
,
2000
, “
The OpenCV Library
,”
Dr. Dobb’s J. Softw. Tools
, pp.
122
125
.
34.
Sharifi
,
S. S.
,
Fritsche
,
S.
,
Holzinger
,
C.
, and
Enzinger
,
N.
,
2023
, “
Selection of Parameters for Optimized WAAM Structures for Civil Engineering Applications
,”
Materials
,
16
(
13
), p.
4862
.
35.
He
,
H.
,
Aksoy
,
B.
,
Saunders
,
G.
,
Wason
,
J.
, and
Wen
,
J. T.
,
2023
, “
Plug-and-Play Software Architecture for Coordinating Multiple Industrial Robots and Sensors From Multiple Vendors
,”
International Conference on Automation Science and Engineering (CASE)
,
Auckland, New Zealand
,
Aug. 26
, pp.
1
8
.
36.
He
,
H.
,
Saunders
,
G.
, and
Wen
,
J. T.
,
2022
, “
Robotic Fabric Fusing Using a Novel Electroadhesion Gripper
,”
International Conference on Automation Science and Engineering (CASE)
,
Mexico City, Mexico
,
Aug. 20
.
37.
Yaskawa America, Inc.
,
2019
, “DX200 Options Instructions for Reference Manual For New Language Environment MotoPlus (API Function Specifications).”
You do not currently have access to this content.