Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: Exergy Analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Technical Briefs
J. Heat Mass Transfer. June 2015, 137(6): 064501.
Paper No: HT-14-1071
Published Online: June 1, 2015
...–hydraulic performance. Using exergy analysis, the objective function was defined as the net exergy gain of the system considering the exergy gain by heat transfer and exergy loss due to friction in the channels. A Reynolds-averaged Navier–Stokes (RANS) analysis and surrogate modeling techniques were used...
Journal Articles
Publisher: ASME
Article Type: Technical Papers
J. Heat Mass Transfer. August 2003, 125(4): 724–733.
Published Online: July 17, 2003
...Rahim K. Jassim The purpose of this paper is to demonstrate the importance of the use of the exergy analysis in the optimization of the geometry of a periodic-flow regenerator. The optimum geometry of the regenerator is determined using the unit cost of exergy of the warm air delivered...