Abstract

Thermal field prediction has garnered ever-increasing attention as an urgent and vital issue in broad applications ranging from thermal management, performance prognosis, lifetime evaluation, and safety assessment, to energy conversion and carbon neutrality. Suffering from the huge amounts of data and iterative iterations, traditional full-order prediction methods are overstretched for rapid predictions and analysis of complex physical fields. In contrast, reduced-order methods, like proper orthogonal decomposition, can tackle such issues with accelerated computational efficiency but predictions and design may be physically inconsistent or implausible. Here we develop a physics-informed proper orthogonal decomposition for the acceleration of thermal field prediction. By introducing a unified index matrix to reduce the amount of processed data and to uniform the physical equations with the reduced-order equations, we achieve accurate and superfast predictions of thermal fields for unstructured grid, validated by typical complicated spray cooling experiments. The amount of data to be processed achieved a reduction of ten million times, with a maximum computational speedup of 101 times. The physics-informed proper orthogonal decomposition framework is demonstrated to be highly efficient and accurate and can be extended to address a wide range of scientific and technological applications beyond thermal field predictions.

References

1.
Van Erp
,
R.
,
Soleimanzadeh
,
R.
,
Nela
,
L.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2020
, “
Co-Designing Electronics With Microfluidics for More Sustainable Cooling
,”
Nature
,
585
(
7824
), pp.
211
216
.10.1038/s41586-020-2666-1
2.
Luo
,
X.
,
Hu
,
R.
,
Liu
,
S.
, and
Wang
,
K.
,
2016
, “
Heat and Fluid Flow in High-Power LED Packaging and Applications
,”
Prog. Energy Combust. Sci.
,
56
, pp.
1
32
.10.1016/j.pecs.2016.05.003
3.
Xiang
,
L.
, and
Hu
,
R.
,
2022
, “
Liquid Directional Steering
,”
Matter
,
5
(
1
), pp.
13
15
.10.1016/j.matt.2021.11.014
4.
Karim
,
A.
,
Kim
,
Y. J.
, and
Kim
,
J.-H.
,
2021
, “
Two-Dimensional Flow Boiling Characteristics With Wettability Surface in Microgap Heat Sink and Heat Transfer Prediction Using Artificial Neural Network
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
091601
.10.1115/1.4051602
5.
Du
,
X.
,
Damewood
,
J. K.
,
Lunger
,
J. R.
,
Millan
,
R.
,
Yildiz
,
B.
,
Li
,
L.
, and
Gómez-Bombarelli
,
R.
,
2023
, “
Machine-Learning-Accelerated Simulations to Enable Automatic Surface Reconstruction
,”
Nat. Comput. Sci.
,
3
(
12
), pp.
1034
1044
.10.1038/s43588-023-00571-7
6.
Fawzi
,
A.
,
Balog
,
M.
,
Huang
,
A.
,
Hubert
,
T.
,
Romera-Paredes
,
B.
,
Barekatain
,
M.
,
Novikov
,
A.
, et al.,
2022
, “
Discovering Faster Matrix Multiplication Algorithms With Reinforcement Learning
,”
Nature
,
610
(
7930
), pp.
47
53
.10.1038/s41586-022-05172-4
7.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
8.
Wang
,
F.
,
Zhai
,
Z.
,
Zhao
,
Z.
,
Di
,
Y.
, and
Chen
,
X.
,
2024
, “
Physics-Informed Neural Network for Lithium-Ion Battery Degradation Stable Modeling and Prognosis
,”
Nat. Commun.
,
15
(
1
), p.
4332
.10.1038/s41467-024-48779-z
9.
Chen
,
Z.
,
Xiong
,
R.
,
Lu
,
J.
, and
Li
,
X.
,
2018
, “
Temperature Rise Prediction of Lithium-Ion Battery Suffering External Short Circuit for All-Climate Electric Vehicles Application
,”
Appl. Energy
,
213
, pp.
375
383
.10.1016/j.apenergy.2018.01.068
10.
Solera-Rico
,
A.
,
Vila
,
C. S.
,
Gómez-López
,
M.
,
Wang
,
Y.
,
Almashjary
,
A.
,
Dawson
,
S. T. M.
, and
Vinuesa
,
R.
,
2024
, “
β-Variational Autoencoders and Transformers for Reduced-Order Modelling of Fluid Flows
,”
Nat. Commun.
,
15
(
1
), p.
1361
.10.1038/s41467-024-45578-4
11.
Lu
,
K.
,
Jin
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
,
Hou
,
L.
,
Zhang
,
Z.
,
Li
,
Z.
, and
Fu
,
C.
,
2019
, “
Review for Order Reduction Based on Proper Orthogonal Decomposition and Outlooks of Applications in Mechanical Systems
,”
Mech. Syst. Signal. Pr.
,
123
, pp.
264
297
.10.1016/j.ymssp.2019.01.018
12.
Lu
,
K.
,
Zhang
,
K.
,
Zhang
,
H.
,
Gu
,
X.
,
Jin
,
Y.
,
Zhao
,
S.
,
Fu
,
C.
, and
Yang
,
Y.
,
2021
, “
A Review of Model Order Reduction Methods for Large-Scale Structure Systems
,”
Shock Vib.
, 2021, pp.
1
19
.10.1155/2021/6631180
13.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
14.
Pearson
,
K.
,
1901
, “
LIII on Lines and Planes of Closest Fit to Systems of Points in Space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.10.1080/14786440109462720
15.
Citriniti
,
J. H.
, and
George
,
W. K.
,
2000
, “
Reconstruction of The Global Velocity Field in The Axisymmetric Mixing Layer Utilizing the Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
418
, pp.
137
166
.10.1017/S0022112000001087
16.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
17.
Pawar
,
S.
,
Ahmed
,
S. E.
,
San
,
O.
, and
Rasheed
,
A.
,
2020
, “
Data-Driven Recovery of Hidden Physics in Reduced Order Modeling of Fluid Flows
,”
Phys. Fluids
,
32
(
3
), p.
036602
.10.1063/5.0002051
18.
Khoo
,
Z. C.
,
Chan
,
C. H.
, and
Hwang
,
Y.
,
2022
, “
A Sparse Optimal Closure for A Reduced-Order Model of Wall-Bounded Turbulence
,”
J. Fluid Mech.
,
939
, p.
A11
.10.1017/jfm.2022.161
19.
Ahmed
,
S. E.
,
Pawar
,
S.
,
San
,
O.
,
Rasheed
,
A.
,
Iliesuc
,
T.
, and
Noack
,
B. R.
,
2021
, “
On Closures for Reduced Order Models-A Spectrum of First-Principle to Machine-Learned Avenues
,”
Phys. Fluids
,
33
, p.
091301
.10.1063/5.0061577
20.
Jiang
,
C.
,
Soh
,
Y. C.
, and
Li
,
H.
,
2017
, “
Two-Stage Indoor Physical Field Reconstruction From Sparse Sensor Observations
,”
Energy Build
,
151
, pp.
548
563
.10.1016/j.enbuild.2017.07.024
21.
Bukka
,
S. R.
,
Gupta
,
R.
,
Magee
,
A. R.
, and
Jaiman
,
R. K.
,
2021
, “
Assessment of Unsteady Flow Predictions Using Hybrid Deep Learning Based Reduced-Order Models
,”
Phys. Fluids
,
33
(
1
), p.
013601
.10.1063/5.0030137
22.
Zhang
,
J.
, and
Zhao
,
X.
,
2020
, “
A Novel Dynamic Wind Farm Wake Model Based on Deep Learning
,”
Appl. Energy
,
277
, p.
115552
.10.1016/j.apenergy.2020.115552
23.
Guastoni
,
L.
,
Güemes
,
A.
,
Ianiro
,
A.
,
Discetti
,
S.
,
Schlatter
,
P.
,
Azizpour
,
H.
, and
Vinuesa
,
R.
,
2021
, “
Convolutional-Network Models to Predict Wall-Bounded Turbulence From Wall Quantities
,”
J. Fluid Mech.
,
928
, p.
A27
.10.1017/jfm.2021.812
24.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
25.
Deng
,
Z.
,
Chen
,
Y.
,
Liu
,
Y.
, and
Kim
,
K. C.
,
2019
, “
Time-Resolved Turbulent Velocity Field Reconstruction Using A Long Short-Term Memory (LSTM)-Based Artificial Intelligence Framework
,”
Phys. Fluids
,
31
(
7
), p.
075108
.10.1063/1.5111558
26.
Nikolaidis
,
M.-A.
,
Ioannou
,
P. J.
,
Farrell
,
B. F.
, and
Lozano-Durán
,
A.
,
2023
, “
POD-Based Study of Turbulent Plane Poiseuille Flow: Comparing Structure and Dynamics Between Quasi-Linear Simulations and DNS
,”
J. Fluid Mech.
,
962
, p.
A16
.10.1017/jfm.2023.274
27.
Ding
,
P.
,
Wu
,
X.-H.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2008
, “
A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
3
), p.
032502
.10.1115/1.2804935
28.
Brunini
,
V.
,
Parish
,
E. J.
,
Tencer
,
J.
, and
Rizzi
,
F.
,
2022
, “
Projection-Based Model Reduction for Coupled Conduction—Enclosure Radiation Systems
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
6
), p.
062101
.10.1115/1.4053994
29.
Mahapatra
,
P. S.
,
Chatterjee
,
S.
,
Mukhopadhyay
,
A.
,
Manna
,
N. K.
, and
Ghosh
,
K.
,
2016
, “
Proper Orthogonal Decomposition of Thermally-Induced Flow Structure in An Enclosure With Alternately Active Localized Heat Sources
,”
Int. J. Heat Mass Transfer
,
94
, pp.
373
379
.10.1016/j.ijheatmasstransfer.2015.11.027
30.
Bergmann
,
M.
,
Cordier
,
L.
, and
Brancher
,
J.-P.
,
2005
, “
Optimal Rotary Control of the Cylinder Wake Using Proper Orthogonal Decomposition Reduced-Order Model
,”
Phys. Fluids
,
17
(
9
), p.
097101
.10.1063/1.2033624
31.
Rönnberg
,
K.
, and
Duwig
,
C.
,
2021
, “
Heat Transfer and Associated Coherent Structures of A Single Impinging Jet From A Round Nozzle
,”
Int. J. Heat Mass Transfer
,
173
, p.
121197
.10.1016/j.ijheatmasstransfer.2021.121197
32.
Wang
,
Y.
,
Yu
,
B.
,
Cao
,
Z.
,
Zou
,
W.
, and
Yu
,
G.
,
2012
, “
A Comparative Study of POD Interpolation and POD Projection Methods for Fast and Accurate Prediction of Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4827
4836
.10.1016/j.ijheatmasstransfer.2012.04.053
33.
Shan
,
F.
,
Fujishiro
,
A.
,
Tsuneyoshi
,
T.
, and
Tsuji
,
Y.
,
2014
, “
Effects of Flow Field on the Wall Mass Transfer Rate Behind A Circular Orifice in A Round Pipe
,”
Int. J. Heat Mass Transfer
,
73
, pp.
542
550
.10.1016/j.ijheatmasstransfer.2014.02.039
34.
Feng
,
L.-H.
,
Wang
,
J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of A Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
1
), p.
014106
.10.1063/1.3540679
35.
Wang
,
L.
,
Pan
,
C.
,
Wang
,
J.
, and
Gao
,
Q.
,
2022
, “
Statistical Signatures of Component Wall-Attached Eddies in Proper Orthogonal Decomposition Modes of A Turbulent Boundary Layer
,”
J. Fluid Mech.
,
944
, p.
A26
.10.1017/jfm.2022.495
36.
Cai
,
T.
,
Peng
,
D.
,
Yavuzkurt
,
S.
, and
Liu
,
Y. Z.
,
2018
, “
Unsteady 2-D Film-Cooling Effectiveness Behind A Single Row of Holes at Different Blowing Ratios: Measurements Using Fast-Response Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1325
1340
.10.1016/j.ijheatmasstransfer.2017.12.141
37.
Lee
,
S.
, and
Hassan
,
Y. A.
,
2018
, “
Experimental Study of Flow Structures Near the Merging Point of Two Parallel Plane Jets Using PIV and POD
,”
Int. J. Heat Mass Transfer
,
116
, pp.
871
888
.10.1016/j.ijheatmasstransfer.2017.09.047
38.
Antoranz
,
A.
,
Ianiro
,
A.
,
Flores
,
O.
, and
García-Villalba
,
M.
,
2018
, “
Extended Proper Orthogonal Decomposition of Non-Homogeneous Thermal Fields in A Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1264
1275
.10.1016/j.ijheatmasstransfer.2017.11.076
39.
Vuppula
,
V. K. R.
,
Ramanujam
,
M.
, and
Runkana
,
V.
,
2024
, “
Reduced-Order Modeling of Conjugate Heat Transfer in Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
227
, p.
125537
.10.1016/j.ijheatmasstransfer.2024.125537
40.
Barabadi
,
B.
,
Kumar
,
S.
, and
Joshi
,
Y. K.
,
2017
, “
Transient Heat Conduction in On-Chip Interconnects Using Proper Orthogonal Decomposition Method
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
7
), p.
072101
.10.1115/1.4035889
41.
Ying
,
Z.
,
Zhang
,
H.
,
Wang
,
L.
, and
Melnik
,
R.
,
2022
, “
Propulsion Optimization of A Jellyfish-Inspired Robot Based on A Nonintrusive Reduced-Order Model With Proper Orthogonal Decomposition
,”
Bioinspir. Biomim.
,
17
(
4
), p.
046005
.10.1088/1748-3190/ac6374
42.
Luo
,
Z.
,
Teng
,
F.
, and
Chen
,
J.
,
2018
, “
A POD-Based Reduced-Order Crank–Nicolson Finite Volume Element Extrapolating Algorithm for 2D Sobolev Equations
,”
Math. Comput. Simul.
,
146
, pp.
118
133
.10.1016/j.matcom.2017.11.002
43.
Balajewicz
,
M. J.
,
Dowell
,
E. H.
, and
Noack
,
B. R.
,
2013
, “
Low-Dimensional Modelling of High-Reynolds-Number Shear Flows Incorporating Constraints From the Navier–Stokes Equation
,”
J. Fluid Mech.
,
729
, pp.
285
308
.10.1017/jfm.2013.278
44.
Athavale
,
J.
,
Yoda
,
M.
, and
Joshi
,
Y.
,
2019
, “
Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1039
1052
.10.1016/j.ijheatmasstransfer.2019.02.041
45.
Ghosh
,
R.
, and
Joshi
,
Y.
,
2013
, “
Error Estimation in POD-Based Dynamic Reduced-Order Thermal Modeling of Data Centers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
698
707
.10.1016/j.ijheatmasstransfer.2012.10.013
46.
Samadiani
,
E.
, and
Joshi
,
Y.
,
2010
, “
Multi-Parameter Model Reduction in Multi-Scale Convective Systems
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2193
2205
.10.1016/j.ijheatmasstransfer.2009.12.013
47.
Xiang
,
L.
,
Yu
,
X.
,
Hong
,
T.
,
Yang
,
X.
,
Xie
,
B.
,
Hu
,
R.
, and
Luo
,
X.
,
2023
, “
Performance of Spray Cooling With Vertical Surface Orientation: An Experimental Investigation
,”
Appl. Therm. Eng.
,
219
, p.
119434
.10.1016/j.applthermaleng.2022.119434
48.
Xiang
,
L.
,
Cheng
,
Y.
,
Yu
,
X.
,
Fan
,
Y.
,
Yang
,
X.
,
Zhang
,
X.
,
Xie
,
B.
, and
Luo
,
X.
,
2023
, “
High-Performance Thermal Management System for High-Power LEDs Based on Double-Nozzle Spray Cooling
,”
Appl. Therm. Eng.
,
231
, p.
121005
.10.1016/j.applthermaleng.2023.121005
49.
Rybicki
,
J. R.
, and
Mudawar
,
I.
,
2006
, “
Single-Phase And Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
5
16
.10.1016/j.ijheatmasstransfer.2005.07.040
You do not currently have access to this content.