Abstract

Natural convection heat transfer is measured in a horizontal enclosure filled with a gas-saturated porous medium composed of glass spheres. The height-to-pore scale ratio (H/d) is in the range of 25–150, yielding a low Darcy number (5.87×108Da1.94×106), which satisfies the porous medium assumption more rigorously. The maximum values attained for the modified Rayleigh numbers (Ra* up to 6150) and fluid Rayleigh numbers (Raf up to 2.5×1011) at these low Darcy numbers enable access to both the Darcy and Forchheimer flow regimes. The heat transfer relationship just beyond the onset of convection is in good accordance with theory and previous experiments, varying linearly with the modified Rayleigh number. For higher modified Rayleigh numbers, the data diverge as a function of the Darcy number, depending on both Da and the modified Rayleigh number. Transition points between the Darcy and Forchheimer regimes are estimated. At the highest fluid Rayleigh numbers, the data with the largest pore scales show some evidence of moving toward a regime similar to that of Rayleigh–Bénard convection, where boundary layer and plume length scales are small enough that the details of the porous medium cease to matter. It is argued that even in this regime, the boundary layer length scales are not diminished enough to make the contribution of Brinkman drag significant.

References

1.
Bringedal
,
C.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2013
, “
Influence of Natural Convection in a Porous Medium When Producing From Borehole Heat Exchangers
,”
Water Resour. Res.
,
49
(
8
), pp.
4927
4938
.10.1002/wrcr.20388
2.
Soboleva
,
E.
,
2023
, “
Instability Problems and Density-Driven Convection in Saturated Porous Media Linking to Hydrogeology: A Review
,”
Fluids
,
8
(
2
), p.
36
.10.3390/fluids8020036
3.
Shankar
,
V.
, and
Hagentoft
,
C.
,
2000
, “
A Numerical Study of Effect of Natural Convection on Thermal Properties of Horizontal Oriented Porous Insulation
,”
J. Therm. Envelope Build. Sci.
,
24
(
2
), pp.
155
167
.10.1106/BLW6-JKJA-VNN4-MH62
4.
Bu
,
S.
,
Li
,
Z.
,
Ma
,
Z.
,
Sun
,
W.
,
Zhang
,
L.
, and
Chen
,
D.
,
2020
, “
Numerical Study of Natural Convection Effects on Effective Thermal Conductivity in a Pebble Bed
,”
Ann. Nucl. Energy
,
144
, p.
107524
.10.1016/j.anucene.2020.107524
5.
Beukema
,
K. J.
,
1980
,
Heat and Mass Transfer During Cooling and Storage of Agricultural Products as Influenced by Natural Convection
,
Wageningen University and Research
,
Wageningen, The Netherlands
.
6.
Aziz
,
K.
,
Bories
,
S. A.
, and
Combarnous
,
M. A.
,
1973
, “
The Influence of Natural Convection in Gas, Oil and Water Reservoirs
,”
J. Can. Pet. Technol.
,
12
(
2
), pp.
6
47
.10.2118/73-02-05
7.
Emami-Meybodi
,
H.
, and
Hassanzadeh
,
H.
,
2015
, “
Two-Phase Convective Mixing Under a Buoyant Plume of CO2 in Deep Saline Aquifers
,”
Adv. Water Resour.
,
76
, pp.
55
71
.10.1016/j.advwatres.2014.11.011
8.
Amooie
,
M. A.
,
Soltanian
,
M. R.
, and
Moortgat
,
J.
,
2018
, “
Solutal Convection in Porous Media: Comparison Between Boundary Conditions of Constant Concentration and Constant Flux
,”
Phys. Rev. E
,
98
(
3
), p.
033118
.10.1103/PhysRevE.98.033118
9.
Goldstein
,
R. J.
,
1969
, “
Thermal Convection in a Horizontal Layer of Air
,”
Prog. Heat Mass Transfer
,
2
, pp.
55
57
.
10.
Niemela
,
J. J.
,
2004
, “
High Rayleigh Number Thermal Convection
,”
J. Low Temp. Phys.
,
134
(
1/2
), pp.
447
456
.10.1023/B:JOLT.0000012594.47945.f6
11.
Srinivasan
,
V.
,
Madanan
,
U.
, and
Goldstein
,
R.
,
2022
, “
Turbulent Rayleigh-Bénard Convection of Compressed Gas: Effect of Sidewall Thermal Conductance
,”
Int. J. Heat Mass Transfer
,
182
, p.
121965
.10.1016/j.ijheatmasstransfer.2021.121965
12.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
503
537
.10.1103/RevModPhys.81.503
13.
Madanan
,
U.
, and
Goldstein
,
R.
,
2019
, “
Thermal Convection in Horizontal Rectangular Enclosures at Moderate Rayleigh Numbers: Effect of Sidewall Conductance and Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
136
, pp.
178
185
.10.1016/j.ijheatmasstransfer.2019.02.076
14.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
15.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
Springer
,
New York
, Chap.
6
.
16.
Vadasz
,
P.
,
2001
, “
Heat Transfer Regimes and Hysteresis in Porous Media Convection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
1
), pp.
145
156
.10.1115/1.1336505
17.
Schneider
,
K.
,
1963
, “
Investigation of the Influence of Free Thermal Convection on Heat Transfer Through Granular Material
,”
Int. Inst. Refrig., Proc.
,
247
, p.
253
.10.1016/B978-1-4831-9857-6.50053-4
18.
Buretta
,
R.
, and
Berman
,
A.
,
1976
, “
Convective Heat Transfer in a Liquid Saturated Porous Layer
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
249
253
.10.1115/1.3423818
19.
Kladias
,
N.
, and
Prasad
,
V.
,
1991
, “
Experimental Verification of Darcy-Brinkman-Forchheimer Flow Model for Natural Convection in Porous Media
,”
J. Thermophys. Heat Transfer
,
5
(
4
), pp.
560
576
.10.2514/3.301
20.
Kathare
,
V.
,
Davidson
,
J.
, and
Kulacki
,
F.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
.10.1016/j.ijheatmasstransfer.2007.11.051
21.
Davidson
,
J. H.
,
Kulacki
,
F.
, and
Savela
,
D.
,
2009
, “
Natural Convection in Water-Saturated Reticulated Vitreous Carbon Foam
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4479
4483
.10.1016/j.ijheatmasstransfer.2009.03.051
22.
Keene
,
D. J.
, and
Goldstein
,
R.
,
2015
, “
Thermal Convection in Porous Media at High Rayleigh Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
3
), p.
034503
.10.1115/1.4029087
23.
Ataei-Dadavi
,
I.
,
Chakkingal
,
M.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Tummers
,
M. J.
,
2019
, “
Flow and Heat Transfer Measurements in Natural Convection in Coarse-Grained Porous Media
,”
Int. J. Heat Mass Transfer
,
130
, pp.
575
584
.10.1016/j.ijheatmasstransfer.2018.10.118
24.
Yen
,
Y.-C.
,
1974
, “
Effects of Density Inversion on Free Convective Heat Transfer in Porous Layer Heated From Below
,”
Int. J. Heat Mass Transfer
,
17
(
11
), pp.
1349
1356
.10.1016/0017-9310(74)90136-7
25.
Combarnous
,
M.
, and
Bories
,
S.
,
1975
, “
Hydrothermal Convection in Saturated Porous Media
,”
Advances in Hydroscience
, Vol.
10
,
Elsevier
, Amsterdam, The Netherlands, pp.
231
307
.
26.
Lister
,
C.
,
1990
, “
An Explanation for the Multivalued Heat Transport Found Experimentally for Convection in a Porous Medium
,”
J. Fluid Mech.
,
214
, pp.
287
320
.10.1017/S0022112090000143
27.
Elder
,
J. W.
,
1967
, “
Steady Free Convection in a Porous Medium Heated From Below
,”
J. Fluid Mech.
,
27
(
1
), pp.
29
48
.10.1017/S0022112067000023
28.
Katto
,
Y.
, and
Masuoka
,
T.
,
1967
, “
Criterion for the Onset of Convective Flow in a Fluid in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
10
(
3
), pp.
297
309
.10.1016/0017-9310(67)90147-0
29.
Close
,
D.
,
Symons
,
J.
, and
White
,
R.
,
1985
, “
Convective Heat Transfer in Shallow, Gas-Filled Porous Media: Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
28
(
12
), pp.
2371
2378
.10.1016/0017-9310(85)90056-0
30.
Prasad
,
V.
,
Kulacki
,
F.
, and
Keyhani
,
M.
,
1985
, “
Natural Convection in Porous Media
,”
J. Fluid Mech.
,
150
, pp.
89
119
.10.1017/S0022112085000040
31.
Kladias
,
N.
, and
Prasad
,
V.
,
1989
, “
Natural Convection in Horizontal Porous Layers: Effects of Darcy and Prandtl Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
4
), pp.
926
935
.10.1115/1.3250807
32.
Nithiarasu
,
P.
,
Seetharamu
,
K.
, and
Sundararajan
,
T.
,
1997
, “
Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium
,”
Int. J. Heat Mass Transfer
,
40
(
16
), pp.
3955
3967
.10.1016/S0017-9310(97)00008-2
33.
Chakkingal
,
M.
,
Kenjereš
,
S.
,
Ataei-Dadavi
,
I.
,
Tummers
,
M.
, and
Kleijn
,
C. R.
,
2019
, “
Numerical Analysis of Natural Convection With Conjugate Heat Transfer in Coarse-Grained Porous Media
,”
Int. J. Heat Fluid Flow
,
77
, pp.
48
60
.10.1016/j.ijheatfluidflow.2019.03.008
34.
Liu
,
S.
,
Jiang
,
L.
,
Chong
,
K. L.
,
Zhu
,
X.
,
Wan
,
Z.-H.
,
Verzicco
,
R.
,
Stevens
,
R. J.
,
Lohse
,
D.
, and
Sun
,
C.
,
2020
, “
From Rayleigh–Bénard Convection to Porous-Media Convection: How Porosity Affects Heat Transfer and Flow Structure
,”
J. Fluid Mech.
,
895
, p.
A18
.10.1017/jfm.2020.309
35.
Madanan
,
U.
, and
Goldstein
,
R.
,
2019
, “
Effect of Sidewall Conductance on Nusselt Number for Rayleigh-Bénard Convection: A Semi-Analytical and Experimental Correction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
12
), p.
122504
.10.1115/1.4044659
36.
Madanan
,
U.
, and
Goldstein
,
R.
,
2019
, “
Experimental Investigation on Very-High-Rayleigh Number Thermal Convection in Tilted Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
139
, pp.
121
129
.10.1016/j.ijheatmasstransfer.2019.05.011
37.
Lemmon
,
E. W.
,
2010
,
Thermophysical Properties of Fluid Systems
,
NIST Chemistry WebBook
,
Gaithersburg, MD
.
38.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
545
551
.10.1016/0017-9310(76)90168-X
39.
Coquard
,
R.
,
Rochais
,
D.
, and
Baillis
,
D.
,
2012
, “
Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures: Contribution to the Special Issue ‘Materials in Fire' Guest Editor K. Ghazi Wakili
,”
Fire Technol.
,
48
(
3
), pp.
699
732
.10.1007/s10694-010-0167-8
40.
Howell
,
J. R.
,
Mengüç
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2020
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
41.
Tyvand
,
P.
,
2002
, “
Onset of Rayleigh-Bénard Convection in Porous Bodies
,”
Transport Phenomena in Porous Media II
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
82
112
.
42.
Wang
,
M.
, and
Bejan
,
A.
,
1987
, “
Heat Transfer Correlation for Bénard Convection in a Fluid Saturated Porous Layer
,”
Int. Commun. Heat Mass Transfer
,
14
(
6
), pp.
617
626
.10.1016/0735-1933(87)90041-8
43.
Beavers
,
G.
,
Sparrow
,
E. M.
, and
Rodenz
,
D.
,
1973
, “
Influence of Bed Size on the Flow Characteristics and Porosity of Randomly Packed Beds of Spheres
,”
ASME J. Appl. Mech.
,
40
(
3
), pp.
655
660
.10.1115/1.3423067
44.
Fleischer
,
A.
, and
Goldstein
,
R.
,
2002
, “
High-Rayleigh-Number Convection of Pressurized Gases in a Horizontal Enclosure
,”
J. Fluid Mech.
,
469
, pp.
1
12
.10.1017/S002211200200174X
You do not currently have access to this content.