Abstract

It is demonstrated that axisymmetric view factor systems can be modeled as a composite of truncated cones. For the hemisphere primitive shape, it is represented as a composite of truncated cones. One conclusion of the investigation is eight truncated cones are required to give a reasonable approximation to a hemisphere. The sensitivity of the run-time for the Monte Carlo methods to the number of surfaces is investigated and the run-time of the Monte Carlo method combined with ray tracing scales as the square of the number of surfaces, whereas the run-time of the hybrid Monte Carlo method scales in a weakly linear way with the number of surfaces. Representing a hemisphere with eight surfaces, for the view factor system considered and an root mean squared error (RMS) threshold of 0.001 the hybrid Monte Carlo method and quasi-Monte Carlo method have a speed-up of 8.3 and 55 compared to the Monte Carlo method with ray tracing.

References

1.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2010
, “
Numerical Determination of Radiative View Factors Using Ray Tracing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
7
), p.
072702
.10.1115/1.4000974
2.
Hajji
,
A. R.
,
Mirhosseini
,
M.
,
Saboonchi
,
A.
, and
Moosavi
,
A.
,
2015
, “
Different Methods for Calculating a View Factor in Radiative Applications: Strip to in-Plane Parallel Semi-Cylinder
,”
J. Eng. Thermophys.
,
24
(
2
), pp.
169
180
.10.1134/S1810232815020071
3.
Mirhosseini
,
M.
, and
Saboonchi
,
A.
,
2011
, “
View Factor Calculation Using the Monte Carlo Method for a 3D Strip Element to Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
821
826
.10.1016/j.icheatmasstransfer.2011.03.022
4.
He
,
F.
,
Shi
,
J.
,
Zhou
,
L.
,
Li
,
W.
, and
Li
,
X.
,
2018
, “
Monte Carlo Calculation of View Factors Between Some Complex Surfaces: Rectangular Plane and Parallel Cylinder, Rectangular Plane and Torus, Especially Cold-Rolled Strip and W-Shaped Radiant Tube in Continuous Annealing Furnace
,”
Int. J. Therm. Sci.
,
134
, pp.
465
474
.10.1016/j.ijthermalsci.2018.05.050
5.
Hoff
,
S. J.
,
Janni
,
K. A.
, and
Carlo
,
M.
,
1989
, “
Technique for Determination of Thermal Radiation Shape Factors
,”
Trans. Am. Soc. Agri. Eng.
,
32
, pp.
1023
1028
.10.13031/2013.31108
6.
Mirhosseini
,
M.
,
Rezania
,
A.
, and
Rosendahl
,
L.
,
2017
, “
View Factor of Solar Chimneys by Monte Carlo Method
,”
Nineth International Conference on Applied Energy
,
ICA E
,
Cardiff, UK
, August 2017, pp.
21
24
.
7.
Biolabeling
,
M.
,
2005
, “
An Efficient Monte Carlo Approach for Determining Shape Factors
,”
Int. J. Mech. Eng. Ed.
,
33
, pp.
39
44
.10.7227/IJMEE.33.1.3
8.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
, Boston, MA.
9.
Cumber
,
P. S.
, and
Wilkinson
,
P.
,
2011
, “
Signal Processing, Sobol Sequences and Hot Sampling: Calculation of Incident Heat Flux Distributions Surrounding Diffusion Flames
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4689
4701
.10.1016/j.ijheatmasstransfer.2011.06.008
10.
L’Ecuyer
,
P.
,
2004
, “
Quasi-Monte Carlo Methods in Finance
,”
IEEE, Proceedings Winter Simulation Conference
, Piscataway, NJ, Dec., pp.
1645
1655
.
11.
Mazumder
,
S.
, and
Kirsch
,
A.
,
2000
, “
A Fast Monte Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Numer. Heat Transfer, Part B
,
37
, pp.
185
199
.10.1080/104077900275486
12.
Mazumder
,
S.
,
2006
, “
Methods to Accelerate Ray Tracing in the Monte Carlo Method for Surface-to-Surface Radiation Transport
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
9
), pp.
945
952
.10.1115/1.2241978
13.
Havran
,
V.
,
Kopal
,
T.
,
Bittner
,
J.
, and
Žára
,
J.
,
1998
, “
Fast Robust BSP Tree Traversal Algorithm for Ray Tracing
,”
J. Graph. Tools
,
2
(
4
), pp.
15
23
.10.1080/10867651.1997.10487481
14.
Taylor
,
R. P.
,
Luck
,
R.
,
Hodge
,
B. K.
, and
Steele
,
W. G.
,
1995
, “
Uncertainty Analysis of Diffuse-Grey Radiation Enclosure Problems
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
63
69
.10.2514/3.629
15.
Daun
,
K. J.
,
Morton
,
D. P.
, and
Howell
,
J. R.
,
2005
, “
Smoothing Monte Carlo Exchange Factors Through Constrained Maximum Likelihood Estimation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
10
), pp.
1124
1128
.10.1115/1.2035111
16.
Larsen
,
M. E.
, and
Howell
,
J. R.
,
1986
, “
Least-Squares Smoothing of Direct-Exchange Areas in Zonal Analysis
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
1
), pp.
239
242
.10.1115/1.3246898
17.
Loehrke
,
R. I.
,
Dolaghan
,
J. S.
, and
Burns
,
P. J.
,
1995
, “
Smoothing Monte–Carlo Exchange Factors
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
2
), pp.
524
526
.10.1115/1.2822557
18.
Cumber
,
P. S.
,
2022
, “
View Factors – When is Ray Tracing a Good Idea?
,”
Int. J. Heat Mass Transfer
,
189
, p.
122698
.10.1016/j.ijheatmasstransfer.2022.122698
19.
Cumber
,
P. S.
,
2022
, “
Evaluating View Factors Using a Hybrid Monte Carlo Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(12), p.
122801
.10.1115/1.4055516
20.
Cumber
,
P. S.
,
2023
, “
A Hybrid Monte Carlo Method Applied to the Calculation of View Factors in Cylindrical Shells
,”
Numer. Heat Transfer, Part B
, accepted, pp.
1
22
.10.1080/10407790.2023.2281604
21.
Miyahara
,
S.
, and
Kobayashi
,
S.
,
1995
, “
Numerical Calculation of View Factors for an Axially Symmetrical Geometry
,”
Numer. Heat Transfer, Part B
,
28
(
4
), pp.
437
453
.10.1080/10407799508928843
22.
Katte
,
S. S.
, and
Venkateshan
,
S. P.
,
2000
, “
Accurate Determination of View Factors in Axisymmetric Enclosures With Shadowing Bodies Inside
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
68
76
.10.2514/2.6491
23.
Walker
,
T.
,
2013
, “
The Use of Primitives in the Calculation of Radiative View Factors
,” Ph.D. thesis,
University of Sydney
.
24.
Howell
,
J. R.
,
1982
,
A Catalogue of Radiation Configuration Factors
,
McGraw-Hill
,
New York
.
25.
Cumber
,
P. S.
, “
Application of Stratified Sampling to View Factor Systems
,”
Int. Commun. Heat Mass Transfer.
(submitted).
You do not currently have access to this content.