Abstract

The present study proposes a novel rim film cooling design, motivated by the fact that the suction-side rim and the cavity floor near the leading edge of a conventional squealer tip with a camber-line film hole array are directly subjected to high-temperature gas. The new design consists of cooling injection for rim-hole or -slot cooling at the leading edge. The parameters of injection geometry and cavity depth are also discussed in this study. The flow physics, leakage flowrate, heat transfer characteristics, and vortices in the cavity are carefully analyzed. The results show that rim film cooling can substantially inhibit tip heat transfer and the amount of hot leakage flow. Compared with the typical design, the maximum and average heat transfer coefficients of the blade tip of the rim slot case are reduced by 12.83% and 5.43%,, respectively. The variation in cavity depth is sensitive to the heat transfer on the cavity floor of the squealer tip blade. With the optimal design, the average and maximum heat transfer coefficients are reduced by 14.42% and 14.21%,, respectively. In addition, the leakage flowrate can be reduced by a maximum of 3.67% by rim injection compared with the conventional squealer tip.

References

1.
Yamamoto
,
H.
,
Seki
,
N.
, and
Fukusako
,
S.
,
1983
, “
Forced Convection Heat Transfer on Heated Bottom Surface of a Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
17
(
2
), pp.
73
83
.10.1007/BF01007221
2.
Bunker
,
R. S.
,
2004
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
3.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
1
), pp.
73
79
.10.1115/1.3250661
4.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
G. S.
,
2001
, “
Detailed Heat Transfer Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
4
), pp.
803
809
.10.1115/1.1373655
5.
Azad
,
G. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
3
), pp.
452
459
.10.1115/1.1471523
6.
Ahn
,
J. Y.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
5
), pp.
521
530
.10.1115/1.1909208
7.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.10.1115/1.2162183
8.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
9.
Lee
,
S. W.
, and
Choi
,
M. Y.
,
2010
, “
Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison With Plane Tip Results: Part 2-Aerodynamic Losses
,”
Exp. Fluids
,
49
(
3
), pp.
713
723
.10.1007/s00348-010-0849-5
10.
Lee
,
S. W.
, and
Kim
,
S. U.
,
2010
, “
Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison With Plane Tip Results: Part 1-Tip Gap Flow Structure
,”
Exp. Fluids
,
49
(
5
), pp.
1039
1051
.10.1007/s00348-010-0848-6
11.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.10.1115/1.2929188
12.
Prakash
,
C.
,
Lee
,
C. P.
,
Cherry
,
D. G.
,
Doughty
,
R.
, and
Wadia
,
A. R.
,
2006
, “
Analysis of Some Improved Blade Tip Concepts
,”
ASME J. Turbomach.
,
128
(
4
), pp.
639
642
.10.1115/1.2220050
13.
Tallman
,
J. A.
,
2004
, “
A Computational Study of Tip Desensitization in Axial Flow Turbines Part 2: Turbine Rotor Simulations With Modified Tip Shapes
,”
ASME
Paper No. GT2004-53919.10.1115/GT2004-53919
14.
Mischo
,
B.
,
Burdet
,
A.
, and
Abhari
,
R. S.
,
2011
, “
Influence of Stator-Rotor Interaction on the Aerothermal Performance of Recess Blade Tips
,”
ASME J. Turbomach.
,
133
(
1
), p.
011023
.10.1115/1.4001134
15.
Lee
,
S. E.
,
Lee
,
S. W.
, and
Kwak
,
H. S.
,
2011
, “
Tip Leakage Aerodynamics Over Stepped Squealer Tips in a Turbine Cascade
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
135
145
.10.1016/j.expthermflusci.2010.08.014
16.
Zhou
,
C.
,
2015
, “
Effects of Endwall Motion on Thermal Performance of Cavity Tips With Different Squealer Width and Height
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1248
1258
.10.1016/j.ijheatmasstransfer.2015.07.101
17.
Lee
,
S. W.
, and
Lee
,
S. E.
,
2014
, “
Tip Gap Flow Characteristics in a Turbine Cascade Equipped With Pressure-Side Partial Squealer Rims
,”
Int. J. Heat Fluid Flow
,
50
, pp.
369
377
.10.1016/j.ijheatfluidflow.2014.09.008
18.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.10.1016/j.ijheatmasstransfer.2017.08.090
19.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2006
, “
Film-Cooling Prediction on Turbine Blade Tip With Various Film Hole Configurations
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
3
), pp.
558
568
.10.2514/1.18422
20.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2004
, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film-Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,”
ASME
Paper No. 2004-GT-53199.10.1115/2004-GT-53199
21.
Hohlfeld
,
E. M.
,
Christophel
,
J. R.
,
Couch
,
E. L.
, and
Thole
,
K. A.
, “
Predictions of Cooling From Dirt Purge Holes Along the Tip of a Turbine Blade
,”
ASME
Paper No. 2003-GT-38251.10.1115/2003-GT-38251
22.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.10.1115/1.4043263
23.
Cheng
,
F. N.
,
Zhang
,
J. Z.
,
Chang
,
H. P.
, and
Zhang
,
J. Y.
,
2018
, “
Investigations of Film-Cooling Effectiveness on the Squealer Tip With Various Film-Hole Configurations in a Linear Cascade
,”
Int. J. Heat Mass Transfer
,
117
, pp.
344
357
.10.1016/j.ijheatmasstransfer.2017.09.100
24.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
4
), pp.
669
677
.10.1115/1.1571849
25.
Timko
,
L. P.
,
1990
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA Report No. NASA CR-168289.
26.
Icem
,
A.
,
2009
,
ANSYS ICEM CFD 11.0: Help Manual
,
ANSYS Inc
.,
Canonsburg, PA
.
27.
Fluent
,
A.
,
2009
,
ANSYS FLUENT 12.0: Theory Guide
,
Fluent Inc
.,
New York
.
28.
Hanjalić
,
K.
,
1994
, “
Advanced Turbulence Closure Models: A View of Current Status and Future Prospects
,”
Int. J. Heat Fluid Flow
,
15
(
3
), pp.
178
203
.10.1016/0142-727X(94)90038-8
29.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade With a Squealer-Tip
,”
ASME
Paper No. 2002-GT-30193.10.1115/2002-GT-30193
30.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.10.1115/1.1811093
31.
Tan
,
C.
,
Zhang
,
H.
,
Xia
,
H.
,
Chen
,
H.
, and
Yamamoto
,
A.
,
2012
, “
Blade Bowing Effect on Aerodynamic Performance of a Highly Loaded Turbine Cascade
,”
J. Propul. Power
,
26
(
3
), pp.
604
608
.10.2514/1.45308
32.
Zhang
,
H.
,
Wang
,
S.
, and
Wang
,
Z.
,
2007
, “
Variation of Vortex Structure in a Compressor Cascade at Different Incidences
,”
J. Propul. Power
,
23
(
1
), pp.
221
226
.10.2514/1.17245
33.
Kan
,
X.
,
Wu
,
W.
, and
Zhong
,
J.
,
2020
, “
Effects of Vortex Dynamics Mechanism of Blade-End Treatment on the Flow Losses in a Compressor Cascade at Critical Condition
,”
Aerosp. Sci. Technol.
,
102
(
2020
), p.
105857
.10.1016/j.ast.2020.105857
You do not currently have access to this content.