Abstract

Heat transfer in a multilayer body plays a key role in design and optimization of several engineering systems. While the analysis of simple multilayer problems is quite straightforward, realistic scenarios such as time-dependent boundary conditions result in significant complications in analysis. This work presents thermal analysis of a one-dimensional heat-generating multilayer cylinder with time-varying convective heat transfer at the boundary. Such a scenario may occur in applications such as nuclear reactors, jet impingement cooling, turbine blade heat transfer, as well as casting and related manufacturing processes. Analysis is presented for both annular and solid cylinders. A derivation for the temperature distribution is carried out, using a shifting function to split the time-dependent boundary condition into two parts, followed by appropriate mathematical substitution. For particular special cases, the analytical results derived here are shown to reduce exactly to results from past work. Good agreement of the theoretical results with numerical simulations is also demonstrated. Thermal response to various realistic time-dependent boundary conditions is analyzed. This work contributes towards the design of realistic multilayer problems and may facilitate the optimization of engineering systems where multilayer thermal conduction plays a key role.

References

1.
Kandlikar
,
S. G.
,
2014
, “
Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024001
.10.1115/1.4027175
2.
French
,
H.
,
1981
,
Heat Transfer and Fluid Flow in Nuclear Systems
, 1st ed.,
Pergamon Press
, Oxford, UK.
3.
Prikhod'ko
,
I. M.
,
1972
, “
Thermal Conductivity of a Two-Layer Wall for a Time-Varying Heat-Transfer Coefficient and Ambient Temperature
,”
J. Eng. Phys
,
18
, pp.
239
242
.10.1007/BF00828018
4.
Daryabeigi
,
K.
,
2002
, “
Thermal Analysis and Design Optimization of Multilayer Insulation for Reentry Aerodynamic Heating
,”
J. Spacecr. Rockets
,
39
(
4
), pp.
509
514
.10.2514/2.3863
5.
Bhargava
,
A.
,
Chanmugam
,
A.
, and
Herman
,
C.
,
2014
, “
Heat Transfer Model for Deep Tissue Injury: A Step Towards an Early Thermographic Diagnostic Capability
,”
Diagn. Pathol.
,
9
(
1
), pp.
36:1
18
.10.1186/1746-1596-9-36
6.
Ferragut
,
L.
,
Asensio
,
M. I.
,
Cascón
,
J. M.
,
Prieto
,
D.
, and
Ramírez
,
J.
,
2013
, “
An Efficient Algorithm for Solving a Multi-Layer Convection-Diffusion Problem Applied to Air Pollution Problems
,”
Adv. Eng. Software
,
65
, pp.
191
199
.10.1016/j.advengsoft.2013.06.010
7.
Jain
,
A.
,
McGinty
,
S.
,
Pontrelli
,
G.
, and
Zhou
,
L.
,
2022
, “
Theoretical Modeling of Endovascular Drug Delivery Into a Multilayer Arterial Wall From a Drug-Coated Balloon
,”
Int. J. Heat Mass Transfer
,
187
, p.
122572
.10.1016/j.ijheatmasstransfer.2022.122572
8.
Choobineh
,
L.
,
Jones
,
J.
, and
Jain
,
A.
,
2017
, “
Experimental and Numerical Investigation of Inter-Die Thermal Resistance in 3D ICs
,”
ASME J. Electron. Packag.
,
139
, p.
020908
.10.1115/1.4036404
9.
Oprins
,
H.
,
Cherman
,
V.
,
Vandevelde
,
B.
,
Van der Plas
,
G.
,
Marchal
,
P.
, and
Beyne
,
E.
,
2012
, “
Numerical and Experimental Characterization of the Thermal Behavior of a Packaged DRAM-on-Logic Stack
,” IEEE 62nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29-June 1, pp.
1081
1088
.10.1109/ECTC.2012.6248970
10.
Sekar
,
D.
,
2008
, “
A 3D-IC Technology With Integrated Microchannel Cooling
,”
International Interconnect Technology Conference
, Burlingame, CA, June 1-4, pp.
13
15
.10.1109/IITC.2008.4546911
11.
Mikhailov
,
M. D.
, and
Özışık
,
M. N.
,
1994
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Dover Publications
,
New York
.
12.
Özışık
,
M. N.
,
2013
,
Boundary Value Problems of Heat Conduction
,
Dover Publications
, Mineola, NY.
13.
Yener
,
Y.
, and
Özışık
,
M. N.
,
1974
, “
On the Solution of Unsteady Heat Conduction in Multi-Region Media With Time-Dependent Heat Transfer Coefficient
,”
Proceedings of fifth International Heat Transfer Conference
,
Tokyo, Japan
, Sept. 3-7, pp.
188
192
.
14.
de Monte
,
F.
,
2002
, “
An Analytic Approach to Be Unsteady Heat Conduction Processes in One-Dimensional Composite Media
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1333
1343
.10.1016/S0017-9310(01)00226-5
15.
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
An Explicit Analytical Model for Rapid Computation of Temperature Field in a Three-Dimensional Integrated Circuit (3D IC)
,”
Int. J. Therm. Sci.
,
87
, pp.
103
109
.10.1016/j.ijthermalsci.2014.08.012
16.
Choobineh
,
L.
, and
Jain
,
A.
,
2012
, “
Analytical Solution for Steady-State and Transient Temperature Field in Vertically Integrated Three-Dimensional Integrated Circuits (3D ICs)
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
12
), pp.
2031
2039
.10.1109/TCPMT.2012.2213820
17.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Theoretical Modeling of Heat Transfer in a Multilayer Rectangular Body With Spatially-Varying Convective Heat Transfer Boundary Condition
,”
Int. J. Therm. Sci.
,
170
, p.
107156
.10.1016/j.ijthermalsci.2021.107156
18.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Analytical Solution for Temperature Distribution in a Multilayer Body With Spatially-Varying Convective Heat Transfer Boundary Condition on Both Ends
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
3
), p.
034501
.10.1115/1.4048968
19.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Temperature Distribution in a Multi-Layer Cylinder With Circumferentially-Varying Convective Heat Transfer Boundary Conditions
,”
Int. J. Therm. Sci.
,
160
, p.
106673
.10.1016/j.ijthermalsci.2020.106673
20.
Thompson
,
J. J.
, and
Holy
,
Z. J.
,
1969
, “
Axisymmetric Thermal Response Problems for a Spherical Fuel Element With Time Dependent Heat Transfer Coefficients
,”
Nucl. Eng. Des.
,
9
(
1
), pp.
29
44
.10.1016/0029-5493(69)90048-X
21.
Al-Haddad
,
A. A.
, and
Al-Binally
,
N.
,
1989
, “
Prediction of Heat Transfer Coefficient in Pulsating Flow
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
131
133
.10.1016/0142-727X(89)90006-4
22.
J. H.
,
Lienhard
,
V.
,
1995
, “
Liquid Jet Impingement
,”
Annu. Rev. Heat Transfer
,
6
(
6
), pp.
199
270
.10.1615/AnnualRevHeatTransfer.v6.60
23.
Becker
,
N. M.
,
Bivins
,
R. L.
,
Hsu
,
Y. C.
,
Murphy
,
H. D.
,
White
,
A. B.
, Jr.
, and
Wing
,
G. M.
,
1983
, “
Heat Diffusion With Time-Dependent Convective Boundary Condition
,”
Int. J. Numer. Methods Eng.
,
19
(
12
), pp.
1871
1880
.10.1002/nme.1620191210
24.
Lyubov
,
B. Y.
, and
Yalovoi
,
N. I.
,
1969
, “
Heat Conductivity of a Body With Variable Heat Exchange Coefficient
,”
J. Eng. Phys.
,
17
(
4
), pp.
1264
1270
.10.1007/BF00832108
25.
Chen
,
H. T.
,
Sun
,
S. L.
,
Huang
,
H. C.
, and
Lee
,
S. Y.
,
2010
, “
Analytic Closed Solution for the Heat Conduction With Time-Dependent Heat Convection Coefficient at One Boundary
,”
Comput. Model. Eng. Sci.
,
59
, pp.
107
126
.10.3970/cmes.2010.059.107
26.
Tu
,
T. W.
, and
Lee
,
S. Y.
,
2015
, “
Analytical Solution of Heat Conduction for Hollow Cylinders With Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient
,”
J. Appl. Math.
,
2015
, pp.
1
9
.10.1155/2015/203404
27.
Özışık
,
M. N.
, and
Murray
,
R. L.
,
1974
, “
On the Solution of Linear Diffusion Problems With Variable Boundary Condition Parameters
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
1
), pp.
48
51
.10.1115/1.3450139
28.
Il'chenko
,
O. T.
,
1973
, “
Temperature Field of a Two-Layered Plate With Time-Varying Heat-Transfer Conditions
,”
J. Eng. Phys.
,
19
, pp.
1567
1570
.10.1007/BF00825358
29.
Chiba
,
R.
,
2018
, “
An Analytical Solution for Transient Heat Conduction in a Composite Slab With Time-Dependent Heat Transfer Coefficient
,”
Math. Prob. Eng.
,
2018
, pp.
1
11
.10.1155/2018/4707860
30.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
1994
, “
Green's Function Solution for Thermal Wave Equation in Finite Bodies
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2615
2626
.10.1016/0017-9310(94)90379-4
31.
Hays-Stang
,
K. J.
, and
Haji-Sheikh
,
A.
,
1999
, “
A Unified Solution for Heat Conduction in Thin Films
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
455
465
.10.1016/S0017-9310(98)00184-7
32.
Haji-Sheikh
,
A.
, “
R0C11B3T00G11, Temperature and Heat Flux Solutions in Two-Layer Concentric Solid Cylinders With a Convective Surface and Prescribed Volumetric Heat Sources
,” Exact Analytical Conduction Toolbox, accessed Sept. 9,
2023
, https://exact.unl.edu/
33.
Kartashov
,
E. M.
,
2019
, “
Heat Conduction at a Variable Heat-Transfer Coefficient
,”
High Temp.
,
57
(
5
), pp.
663
670
.10.1134/S0018151X19050079
34.
Onyango
,
T. T. M.
,
Ingham
,
D. B.
,
Lesnic
,
D.
, and
Slodička
,
M.
,
2009
, “
Determination of a Time-Dependent Heat Transfer Coefficient From Non-Standard Boundary Measurements
,”
Math. Comput. Simul.
,
79
(
5
), pp.
1577
1584
.10.1016/j.matcom.2008.07.014
35.
Borukhov
,
V. T.
, and
Kostyukova
,
O. I.
,
2013
, “
Identification of Time-Dependent Coefficients of Heat Transfer by the Method of Suboptimal Stage-by-Stage Optimization
,”
Int. J. Heat Mass Transfer
,
59
, pp.
286
294
.10.1016/j.ijheatmasstransfer.2012.12.029
36.
Yang
,
Y. C.
,
Chu
,
S. S.
, and
Chang
,
W. J.
,
2004
, “
Thermally Induced Optical Effects in Optical Fibers by Inverse Methodology
,”
J. Appl. Phys
,
95
(
9
), pp.
5159
5165
.10.1063/1.1690115
37.
Mori
,
M.
, and
Kondo
,
M.
,
1993
, “
Temperature and Thermal Stress Analysis in a Structure With Uncertain Heat Transfer Boundary Conditions
,”
Trans. JSME Ser. A
,
59
(
562
), pp.
1514
1518
.10.1299/kikaia.59.1514
You do not currently have access to this content.