Abstract

This paper focuses on investigating and analyzing the effects of geometric parameters on the performance of interrupted flying-wing fins (IFWF). The incorporation of interruptions in the flying-wing fins (FWF) effectively enhances heat transfer efficiency, and increases flow resistance. Moreover, when the number of interruptions exceeds 3, the comprehensive performance of the heat exchanger is diminished. Numerical simulations are employed to thoroughly investigate the effects of geometric parameters individually, within the Reynolds number range of 600–1600, and correlations for the j and f-factor of the IFWF are proposed using the responses surface method. The parametric study of the contribution ratio on the j-factor, f-factor, and JF-factor is obtained by the Taguchi method, including 18 cases with different combinations of key parameters. At a Reynolds number of 1000, it becomes evident that parameter A exerts the most substantial influence on the j-factor, f-factor, and JF-factor. Consequently, in the design of IFWF, prioritizing amplitude A is imperative.

Reference

1.
Dang
,
W.
,
Nugud
,
J.
,
Lin
,
Z.-M.
,
Zhang
,
Y.-H.
,
Liu
,
S.
, and
Wang
,
L.-B.
,
2018
, “
The Performances of Circular Tube Bank Fin Heat Exchangers With Fins Punched With Quadrilateral Vortex Generators and Flow Re-Distributors
,”
Appl. Therm. Eng.
,
134
, pp.
437
449
.10.1016/j.applthermaleng.2018.02.008
2.
Tepe
,
A. Ü.
,
2021
, “
Heat Transfer Enhancement of Fin-Tube Heat Exchangers Using Punched Triangular Ramp Vortex Generator on the Fin Surface
,”
Int. J. Heat Mass Transfer
,
174
, p.
121326
.10.1016/j.ijheatmasstransfer.2021.121326
3.
Lin
,
Z.-M.
,
Li
,
S.-F.
,
Liu
,
C.-P.
,
Wang
,
L.-B.
, and
Zhang
,
Y.-H.
,
2021
, “
Thermal and Flow Characteristics of a Channel Formed by Aligned Round Tube Bank Fins Stamped With Curve Delta-Winglet Vortex Generators
,”
Therm. Sci. Eng. Prog.
,
26
, p.
101113
.10.1016/j.tsep.2021.101113
4.
Lu
,
G.
, and
Zhai
,
X.
,
2019
, “
Effects of Curved Vortex Generators on the Air-Side Performance of Fin-and-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
136
, pp.
509
518
.10.1016/j.ijthermalsci.2018.11.009
5.
Oh
,
Y.
, and
Kim
,
K.
,
2021
, “
Effects of Position and Geometry of Curved Vortex Generators on Fin-Tube Heat-Exchanger Performance Characteristics
,”
Appl. Therm. Eng.
,
189
, p.
116736
.10.1016/j.applthermaleng.2021.116736
6.
Shaeri
,
M. R.
, and
Bonner
,
R. W.
III.
,
2019
, “
Analytical Heat Transfer Model for Laterally Perforated-Finned Heat Sinks
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1164
1173
.10.1016/j.ijheatmasstransfer.2018.11.138
7.
Ibrahim
,
T. K.
,
Mohammed
,
M. N.
,
Kamil Mohammed
,
M.
,
Najafi
,
G.
,
Azwadi Che Sidik
,
N.
,
Basrawi
,
F.
, et al.,
2018
, “
Experimental Study on the Effect of Perforations Shapes on Vertical Heated Fins Performance Under Forced Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
,
118
, pp.
832
846
.10.1016/j.ijheatmasstransfer.2017.11.047
8.
Ray
,
R.
,
Mohanty
,
A.
,
Patro
,
P.
, and
Tripathy
,
K. C.
,
2022
, “
Performance Enhancement of Heat Sink With Branched and Interrupted Fins
,”
Int. Commun. Heat Mass Transfer
,
133
, p.
105945
.10.1016/j.icheatmasstransfer.2022.105945
9.
Feng
,
Z.
,
Hu
,
Z.
,
Lan
,
Y.
,
Huang
,
Z.
, and
Zhang
,
J.
,
2021
, “
Effects of Geometric Parameters of Circular Pin-Fins on Fluid Flow and Heat Transfer in an Interrupted Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
165
, p.
106956
.10.1016/j.ijthermalsci.2021.106956
10.
El Maakoul
,
A.
,
Feddi
,
K.
,
Saadeddine
,
S.
,
Ben Abdellah
,
A.
, and
El Metoui
,
M.
,
2020
, “
Performance Enhancement of Finned Annulus Using Surface Interruptions in Double-Pipe Heat Exchangers
,”
Energy Convers. Manage.
,
210
, p.
112710
.10.1016/j.enconman.2020.112710
11.
Khoshvaght-Aliabadi
,
M.
,
Hassani
,
S.
, and
Mazloumi
,
S. H.
,
2017
, “
Performance Enhancement of Straight and Wavy Miniature Heat Sinks Using Pin-Fin Interruptions and Nanofluids
,”
Chem. Eng. Process.: Process Intensif.
,
122
, pp.
90
108
.10.1016/j.cep.2017.10.002
12.
Ameel
,
B.
,
Huisseune
,
H.
,
Degroote
,
J.
,
T'Joen
,
C.
,
De Jaeger
,
P.
,
Vierendeels
,
J.
, and
De Paepe
,
M.
,
2013
, “
On Fin Efficiency in Interrupted Fin and Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
60
, pp.
557
566
.10.1016/j.ijheatmasstransfer.2013.01.028
13.
Ahmadi
,
M.
,
Mostafavi
,
G.
, and
Bahrami
,
M.
,
2014
, “
Natural Convection From Rectangular Interrupted Fins
,”
Int. J. Therm. Sci.
,
82
, pp.
62
71
.10.1016/j.ijthermalsci.2014.03.016
14.
Kelkar
,
K. M.
, and
Patankar
,
S. V.
,
1990
, “
Numerical Prediction of Fluid Flow and Heat Transfer in a Circular Tube With Longitudinal Fins Interrupted in the Streamwise Direction
,”
ASME J. Heat Mass Transfer
, 112(2), pp.
342
348
.10.1115/1.2910383
15.
Wang
,
C.-C.
,
Tao
,
W.-H.
, and
Chang
,
C.-J.
,
1999
, “
An Investigation of the Airside Performance of the Slit Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
22
(
8
), pp.
595
603
.10.1016/S0140-7007(99)00031-6
16.
Hachemi
,
A.
,
1999
, “
Experimental Study of Thermal Performance of Offset Rectangular Plate Fin Absorber-Plates
,”
Renewable Energy
,
17
(
3
), pp.
371
384
.10.1016/S0960-1481(98)00115-3
17.
Miao
,
L.
,
Wang
,
Y.
,
Kavtaradze
,
R.
,
Liu
,
S.
, and
Zhang
,
S.
,
2022
, “
Experimental and Numerical Analyses of Thermal-Hydraulic Characteristics of Aluminium Flying-Wing Fins
,”
Appl. Therm. Eng.
,
203
, p.
117928
.10.1016/j.applthermaleng.2021.117928
18.
Wang
,
Y.
,
Lin
,
Z.
,
Lei
,
X.
,
Li
,
X.
,
Liu
,
S.
, and
Liu
,
Y.
,
2023
, “
Correlation Development and Parametric Investigation for Thermal–Hydraulic Characteristics of Flying-Wing Fin
,”
Appl. Therm. Eng.
,
219
, p.
119445
.10.1016/j.applthermaleng.2022.119445
19.
Miao
,
L.
,
Wang
,
Y.-C.
,
Kavtaradze
,
R.
,
Liu
,
S.-Q.
,
Sun
,
X.-X.
, and
Zhang
,
T.
,
2022
, “
Numerical Investigation of Heat Transfer and Flow Resistance Characteristics of Interpenetrated Flying-Wing Finned Tubes
,”
Int. J. Heat Mass Transfer
,
191
, p.
122866
.10.1016/j.ijheatmasstransfer.2022.122866
20.
Yun
,
J.-Y.
, and
Lee
,
K.-S.
,
2000
, “
Influence of Design Parameters on the Heat Transfer and Flow Friction Characteristics of the Heat Exchanger With Slit Fins
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2529
2539
.10.1016/S0017-9310(99)00342-7
21.
Wang
,
C. C.
,
Webb
,
R. L.
, and
Chi
,
K. Y.
,
2000
, “
Data Reduction for Air-Side Performance of Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
21
(
4
), pp.
218
226
.10.1016/S0894-1777(00)00005-4
22.
Damasceno
,
J. C.
, and
Couto
,
P. R.
,
2018
, “
Methods for Evaluation of Measurement Uncertainty
,”
Metrology, IntechOpen, London
, pp.
9
28
.
23.
Zhang
,
X.
,
Wang
,
Y.
,
Yu
,
Z.
, and
Zhao
,
D.
,
2015
, “
Numerical Analysis of Thermal-Hydraulic Characteristics on Serrated Fins With Different Attack Angles and Wavelength to Fin Length Ratio
,”
Appl. Therm. Eng.
,
91
, pp.
126
137
.10.1016/j.applthermaleng.2015.08.022
24.
Zhi
,
C.
,
Du
,
S.
,
Zhao
,
F.
,
Li
,
J.
, and
Liu
,
Y.
,
2021
, “
Prediction and Analysis of Thermal-Hydraulic Performance With Slit Fins in Small Diameter (3 mm to 4 mm) Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105684
.10.1016/j.icheatmasstransfer.2021.105684
25.
Wang
,
H.
,
Liu
,
Y-W.
,
Yang
,
P.
,
Wu
,
R-J.
, and
He
,
Y-L.
,
2016
, “
Parametric Study and Optimization of H-Type Finned Tube Heat Exchangers Using Taguchi Method
,”
Appl. Therm. Eng.
,
103
, pp.
128
138
.10.1016/j.applthermaleng.2016.03.033
26.
Zhong
,
G.-Y.
,
Yang
,
P.
, and
Liu
,
Y.-W.
,
2018
, “
Heat Transfer and pressure drop Correlations by Means of Response Surface Methodology
,”
Int. J. Heat Mass Transfer
,
119
, pp.
312
332
.10.1016/j.ijheatmasstransfer.2017.11.025
You do not currently have access to this content.