Abstract

Fluoride-salt-cooled high-temperature reactors (FHRs) are an emerging category of next generation reactors. A thermal hydraulic modeling tool that can perform fluid flow and heat transfer analyses in the core region of the reactor during normal operation and under postulated accident scenarios is essential to enable the further development of preconceptual FHRs. While accident scenarios that involve high core inlet flow rates, such as loss of heat sink and reactivity insertion accidents can be analyzed using simpler flow models, accidents involving low-flow situations such as loss of forced flow due to coolant pump failure typically require more complex models with tight coupling between momentum and energy equations due to the buoyancy dominated flows in these postulated accident scenarios. This study develops a core-level thermal hydraulic model with simplifications to provide a conservative estimate for core temperatures during loss of forced flow accidents. The key simplification is that the model neglects reversed and recirculating flows that could exist in buoyancy-driven flows, which have the net effect of reducing the transverse temperature gradient in the fuel assembly pin bundle regions, thus reducing the core temperatures encountered during the natural circulation accident. The objective of this simplified model is to provide a first-pass, conservative estimate of the peak fuel, graphite, and coolant temperatures, which is particularly useful when evaluating different safety system designs. Further optimization of a few down selected safety systems could use more complex models that would incur a substantially higher computational expense.

References

1.
Scarlat
,
R. O.
, and
Peterson
,
P. F.
,
2014
, “
The Current Status of Fluoride Salt Cooled High Temperature Reactor (FHR) Technology and Its Overlap With HIF Target Chamber Concepts
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
733
, pp.
57
64
.10.1016/j.nima.2013.05.094
2.
Blandford
,
E.
,
Brumback
,
K.
,
Fick
,
L.
,
Gerardi
,
C.
,
Haugh
,
B.
,
Hillstrom
,
E.
,
Johnson
,
K.
,
Peterson
,
P. F.
,
Rubio
,
F.
,
Sarikurt
,
F. S.
,
Sen
,
S.
,
Zhao
,
H.
, and
Zweibaum
,
N.
,
2020
, “
Kairos Power Thermal Hydraulics Research and Development
,”
Nucl. Eng. Des.
,
364
, p.
110636
.10.1016/j.nucengdes.2020.110636
3.
Zhang
,
D.
,
Liu
,
L.
,
Liu
,
M.
,
Xu
,
R.
,
Gong
,
C.
,
Zhang
,
J.
,
Wang
,
C.
,
Qiu
,
S.
, and
Su
,
G.
,
2018
, “
Review of Conceptual Design and Fundamental Research of Molten Salt Reactors in China
,”
Int. J. Energy Res.
,
42
(
5
), pp.
1834
1848
.10.1002/er.3979
4.
Wang
,
C.
,
Sun
,
K.
,
Hu
,
L.-W.
,
Qiu
,
S.
, and
Su
,
G. H.
,
2016
, “
Thermal-Hydraulic Analyses of Transportable Fluoride Salt–Cooled High-Temperature Reactor With CFD Modeling
,”
Nucl. Technol.
,
196
(
1
), pp.
34
52
.10.13182/NT15-42
5.
Brown
,
N. R.
,
Betzler
,
B. R.
,
Carbajo
,
J. J.
,
Wysocki
,
A. J.
,
Greenwood
,
M. S.
,
Gentry
,
C.
, and
Qualls
,
A. L.
,
2017
, “
Preconceptual Design of a Fluoride High Temperature Salt-Cooled Engineering Demonstration Reactor: Core Design and Safety Analysis
,”
Ann. Nucl. Energy
,
103
, pp.
49
59
.10.1016/j.anucene.2017.01.003
6.
Varma
,
V. K.
,
Holcomb
,
D. E.
,
Peretz
,
F. J.
,
Bradley
,
E. C.
,
Ilas
,
D.
,
Qualls
,
A. L.
, and
Zaharia
,
N. M.
,
2012
, “
AHTR Mechanical, Structural, and Neutronic Preconceptual Design
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No.
ORNL/TM-2012/320
.https://info.ornl.gov/sites/publications/Files/Pub38097.pdf
7.
Greene
,
S. R.
,
Greene
,
S. R.
,
Gehin
,
J. C.
,
Holcomb
,
D. E.
,
Carbajo
,
J. J.
,
Ilas
,
D.
,
Cisneros
,
A. T.
,
Varma
,
V. K.
,
Corwin
,
W. R.
,
Wilson
,
D. F.
,
Yoder
Jr,
G. L.
and
Qualls
,
A. L.
,
2011
, “
Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No.
ORNL/TM-2010/199
.10.2172/1008830
8.
IAEA
,
2014
, “
Advances in Small Modular Reactor Technology Developments
,”
International Atomic Energy Agency
,
Vienna, Austria
.
9.
Boldon
,
L.
,
Sabharwall
,
P.
,
Painter
,
C.
, and
Liu
,
L.
,
2014
, “
An Overview of Small Modular Reactors: Status of Global Development, Potential Design Advantages, and Methods for Economic Assessment
,”
Int. J. Energy, Environ. Econ.
,
22
(
5
), pp.
437
459
.https://www.proquest.com/docview/1751289563?pqorigsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals
10.
INL
,
2012
, “
RELAP-3D Code Manuals Revision 4.0.3
,”
Idaho National Laboratory
, Idaho Falls, ID, Report No. INEL-95/0174.
11.
ANSYS
,
2021
, “
ANSYS Fluent Theory Guide
,”
ANSYS
,
Canonsburg, PA
.
12.
Chandrasekaran
,
S.
, and
Garimella
,
S.
,
2024
, “
A Whole-Core Transient Thermal Hydraulic Model for Fluoride Salt-Cooled Reactors
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
2
), p.
022901
.10.1115/1.4063902
13.
Chandrasekaran
,
S.
, and
Garimella
,
S.
,
2020
, “
Steady-State Thermal-Hydraulic Model for Fluoride-Salt-Cooled Small Modular High-Temperature Reactors
,”
Nucl. Technol.
,
206
(
11
), pp.
1698
1720
.10.1080/00295450.2020.1750274
14.
Reed
,
K.
,
2021
, “
Stylized Benchmark Description and Reference Solutions for the Pin-Fueled Small Modular Advanced High Temperature Reactor
,”
MS thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.http://hdl.handle.net/1853/64661
15.
Romatoski
,
R. R.
, and
Hu
,
L. W.
,
2017
, “
Fluoride Salt Coolant Properties for Nuclear Reactor Applications: A Review
,”
Ann. Nucl. Energy
,
109
, pp.
635
647
.10.1016/j.anucene.2017.05.036
16.
Stewart
,
C. W.
,
Wheeler
,
C. L.
,
Cena
,
R. J.
,
McMonagle
,
C. A.
,
Cuta
,
J. M.
, and
Trent
,
D. S.
,
1977
, “
COBRA-IV: The Model and the Method
,” Pacific Northwest Laboratory, Richland, WA, Report No.
BNWL-2214
.10.2172/5358588
17.
George
,
T. L.
,
George
,
T. L.
,
Basehore
,
K. L.
,
Wheeler
,
C. L.
,
Prather
,
W. A.
and
Masterson
,
R. E.
,
1980
, “
COBRA-WC: A Version of COBRA for Single-Phase Multiassembly Thermal Hydraulic Transient Analysis
,” Battelle Pacific Northwest Laboratory, Richland, WA, Report No.
PNL-3259
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/11/570/11570425.pdf
18.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
19.
Khan
,
E. U.
,
George
,
T. L.
, and
Wheeler
,
C. L.
,
1979
, “
COBRA and CORTRAN Code Thermal-Hydraulic Models for LMFBR Core Wide Temperature Distribution During a Natural Convection Transient
,” International Atomic Energy Agency (IAEA), Vienna, Austria, Report No.
IWGFR-29
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/635/12635639.pdf
20.
Cheng
,
S.-K.
, and
Todreas
,
N. E.
,
1986
, “
Hydrodynamic Models and Correlations for Bare and Wire-Wrapped Hexagonal Rod Bundles—Bundle Friction Factors, Subchannel Friction Factors and Mixing Parameters
,”
Nucl. Eng. Des.
,
92
(
2
), pp.
227
251
.10.1016/0029-5493(86)90249-9
21.
Chandrasekaran
,
S.
,
2022
, “
A Whole-Core Thermal Hydraulic Model for Pin-Fueled Fluoride-Salt-Cooled Reactors
,” Ph.D. dissertation,
Georgia Institute of Technology
,
Atlanta, GA
.
22.
INL
,
2017
, “
SAM Theory Manual
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
ANL/NE-17/4
.10.2172/1781819
23.
Greenwood
,
M. S.
,
Betzler
,
B. R.
,
Qualls
,
A. L.
,
Yoo
,
J.
, and
Rabiti
,
C.
,
2020
, “
Demonstration of the Advanced Dynamic System Modeling Tool TRANSFORM in a Molten Salt Reactor Application Via a Model of the Molten Salt Demonstration Reactor
,”
Nucl. Technol.
,
206
(
3
), pp.
478
504
.10.1080/00295450.2019.1627124
24.
Zhang
,
D.
, and
Rahnema
,
F.
,
2018
, “
Continuous-Energy COMET Solution to the Stylized AHTR Benchmark Problem
,”
Ann. Nucl. Energy
,
121
, pp.
284
294
.10.1016/j.anucene.2018.06.032
25.
Rahnema
,
F.
, and
Zhang
,
D.
,
2021
, “
Continuous Energy COMET Solution to a Small Modular Advanced High-Temperature Reactor Benchmark Problem (SmAHTR)
,”
EPJ Web Conf.
,
247
, p.
05002
.10.1051/epjconf/202124705002
26.
El-Wakil
,
M. M.
,
1978
,
Nuclear Heat Transport
,
American Nuclear Society
, La Grange Park, IL.
You do not currently have access to this content.