Abstract

The purpose of this study is to investigate the effect of partial liquefaction (due to ageing) of the vitreous humor on the transport of ocular drugs. In our model, the gel part of the vitreous is treated as a Darcy-type porous medium. A spherical region within the porous part of vitreous is in a liquid state which, for computational purposes, is also treated as a porous medium but with a much higher permeability. Using the finite element method, a time-dependent, three-dimensional model has been developed to computationally simulate (using the Petrov–Galerkin method) the transport of intravitreally injected macromolecules where both convection and diffusion are present. From a fluid physics and transport phenomena perspective, the results show many interesting features. For pressure-driven flow across the vitreous, the flow streamlines converge into the liquefied region as the flow seeks the fastest path of travel. Furthermore, as expected, with increased level of liquefaction, the overall flow rate increases for a given pressure drop. We have quantified this effect for various geometrical considerations. The flow convergence into the liquefied region has important implication for convective transport. One effect is the clear diversion of the drug as it reaches the liquefied region. In some instances, the entry point of the drug in the retinal region gets slightly shifted due to liquefaction. While the model has many approximations and assumptions, the focus is illustrating the effect of liquefaction as one of the building blocks toward a fully comprehensive model.

References

1.
Lamminsalo
,
M.
,
Taskinen
,
E.
,
Karvinen
,
T.
,
Subrizi
,
A.
,
Murtomäki
,
L.
,
Urtti
,
A.
, and
Ranta
,
V. P.
,
2018
, “
Extended Pharmacokinetic Model of the Rabbit Eye for Intravitreal and Intracameral Injections of Macromolecules: Quantitative Analysis of Anterior and Posterior Elimination Pathways
,”
Pharm. Res.
,
35
(
8
), pp.
1531
1514
.10.1007/s11095-018-2435-0
2.
Kuno
,
N.
, and
Fuji
,
S.
,
2010
, “
Biodegradable Intraocular Therapies for Retinal Disorders: Progress to Date
,”
Drugs Aging
,
27
(
2
), pp.
117
134
.10.2165/11530970-000000000-00000
3.
Iovino
,
C.
,
Mastropasqua
,
R.
,
Lupidi
,
M.
,
Bacherini
,
D.
,
Pellegrini
,
M.
,
Bernabei
,
F.
,
Borrelli
,
E.
,
Sacconi
,
R.
,
Carnevali
,
A.
,
D'Aloisio
,
R.
,
Cerquaglia
,
A.
,
Finocchio
,
L.
,
Govetto
,
A.
,
Erba
,
S.
,
Triolo
,
G.
,
Di Zazzo
,
A.
,
Forlini
,
M.
,
Vagge
,
A.
, and
Giannaccare
,
G.
,
2020
, “
Intravitreal Dexamethasone Implant as a Sustained Release Drug Delivery Device for the Treatment of Ocular Diseases: A Comprehensive Review of the Literature
,”
Pharmaceutics
,
12
(
8
), p.
703
.10.3390/pharmaceutics12080703
4.
Lee
,
S. S.
, and
Robinson
,
M. R.
,
2009
, “
Novel Drug Delivery Systems for Retinal Diseases
,”
Ophthal. Res.
,
41
(
3
), pp.
124
135
.10.1159/000209665
5.
Haghjou
,
N.
,
Abdekhodaie
,
M.
,
Cheng
,
Y. L.
, and
Saadatmand
,
M.
,
2011
, “
Computer Modeling of Drug Distribution After Intravitreal Administration
,”
W. A. S. Eng. Technol.
,
52
(
5
), pp.
194
204
. ISNI:0000000091950263https://publications.waset.org/103/computer-modeling-of-drug-distribution-after-intravitreal-administration
6.
Kathawate
,
J.
, and
Acharya
,
S.
,
2008
, “
Computational Modeling of Intravitreal Drug Delivery in the Vitreous Chamber With Different Vitreous Substitutes
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5598
5609
.10.1016/j.ijheatmasstransfer.2008.04.053
7.
Tojo
,
K.
, and
Isowaki
,
A.
,
2001
, “
Pharmacokinetic Model for In Vivo/In Vitro Correlation of Intravitreal Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
52
(
1
), pp.
17
24
.10.1016/S0169-409X(01)00187-9
8.
Missel
,
P.
,
2012
, “
Simulating Intravitreal Injections in Anatomically Accurate Models for Rabbit, Monkey, and Human Eyes
,”
Pharmaceut. Res.
,
29
(
12
), pp.
3251
3272
.10.1007/s11095-012-0721-9
9.
Zhang
,
Y.
,
Bazzazi
,
H.
,
Lima e Silva
,
R.
,
Pandey
,
N. B.
,
Green
,
J. J.
,
Campochiaro
,
P. A.
, and
Popel
,
A. S.
,
2018
, “
Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection
,”
Invest. Ophtalmol. Vis. Sci.
,
59
(
12
), pp.
5266
5276
.10.1167/iovs.17-23632
10.
Avtar
,
R.
, and
Tandon
,
D.
,
2008
, “
A Mathematical Analysis of Intravitreal Drug Transport
,”
Tropical J. Pharm. Res.
,
7
(
1
), pp.
867
877
.10.4314/tjpr.v7i1.14671
11.
Balachandran
,
R.
, and
Barocas
,
V.
,
2008
, “
Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow
,”
Pharm. Res.
,
25
(
11
), pp.
2685
2696
.10.1007/s11095-008-9691-3
12.
Araie
,
M.
, and
Maurice
,
D.
,
1991
, “
The Loss of Fluorescein, Fluorescein Glucuronide and Fluorescein Isothiocyanate Dextran From the Vitreous by the Anterior and Retinal Pathways
,”
Exp. Eye Res.
,
52
(
1
), pp.
27
39
.10.1016/0014-4835(91)90125-X
13.
Ohtori
,
A.
, and
Tojo
,
K.
,
1994
, “
In Vivo/In Vitro Correlation for Intravitreal Delivery of Drugs With the Help of Computer Simulation
,”
Biol. Pharm. Bull.
,
17
(
2
), pp.
283
290
.10.1248/bpb.17.283
14.
Friedrich
,
S.
,
Cheng
,
Y. L.
, and
Saville
,
B.
,
1997
, “
Finite Element Modeling of Drug Distribution in the Vitreous Humor of the Rabbit Eye
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
303
314
.10.1007/BF02648045
15.
Lin
,
H.
,
2004
, “
Finite Element Modeling of Drug Transport Processes After an Intravitreal Injection
,” Master's thesis,
University of Toronto
, Toronto, ON, Canada.
16.
Xu
,
J.
,
Heys
,
J.
,
Barocas
,
V. H.
, and
Randolph
,
T. W.
,
2000
, “
Permeability and Diffusion in Vitreous Humor: Implications for Drug Delivery
,”
Pharm. Res.
,
17
(
6
), pp.
664
669
.10.1023/A:1007517912927
17.
Stay
,
M. S.
,
Xu
,
J.
,
Randolph
,
T. W.
, and
Barocas
,
V. H.
,
2003
, “
Computer Simulation of Convective and Diffusive Transport of Controlled-Release Drugs in the Vitreous Humor
,”
Pharm. Res.
,
20
(
1
), pp.
96
102
.10.1023/A:1022207026982
18.
Park
,
J.
,
Bungay
,
P. M.
,
Lutz
,
R. J.
,
Augsburger
,
J. J.
,
Millard
,
R. W.
,
Sinha Roy
,
A.
, and
Banerjee
,
R. K.
,
2005
, “
Evaluation of Coupled Convective-Diffusive Transport of Drugs Administered by Intravitreal Injection and Controlled Release Implant
,”
J. Control Release
,
105
(
3
), pp.
279
295
.10.1016/j.jconrel.2005.03.010
19.
Meskauskas
,
J.
,
Repetto
,
R.
, and
Siggers
,
J. H.
,
2011
, “
Oscillatory Motion of a Viscoelastic Fluid Within a Spherical Cavity
,”
J. Fluid Mech.
,
685
, pp.
1
22
.10.1017/jfm.2011.263
20.
Bayat
,
J.
,
Emdad
,
H.
, and
Abouali
,
O.
,
2020
, “
Numerical Investigation of Partially Liquefied Vitreous Dynamics as Two-Phase Viscoelastic-Newtonian Fluid Flow in a Planar Cavity Due to Oscillatory Motion
,”
Int. J. Multiphase Flow
,
127
, p.
103259
.10.1016/j.ijmultiphaseflow.2020.103259
21.
Huang
,
J.
, and
Gharib
,
M.
,
2021
, “
Thermal Effects on Fluid Mixing in the Eye
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
251
261
.10.1007/s10439-020-02534-9
22.
Narasimhan
,
A.
, and
Sundarraj
,
C.
,
2015
, “
Convection-Enhanced Intravitreous Drug Delivery in Human Eye
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
2
), p.
121003
.10.1115/1.4030916
23.
Mukundakrishnan
,
K.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Transport and Diffusion Analyses as Applied in Biomaterials Studies
Comprehensive Biomaterials
,
P. Ducheyne, K. Healy, D. Hutmacher, D. Grainger, and C. Kirkpatrick, eds., Vol. 3, Elsevier, Amsterdam, The Netherlands, pp.
133
153
.
24.
Kim
,
H.
,
Lizak
,
M. J.
,
Tansey
,
G.
,
Csaky
,
K. G.
,
Robinson
,
M. R.
,
Yuan
,
P.
,
Wang
,
N. S.
, and
Lutz
,
R. J.
,
2005
, “
Study of Ocular Transport of Drugs Released From an Intravitreal Implant Using Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
150
164
.10.1007/s10439-005-8974-7
25.
Penkova
,
A.
,
Zhang
,
S.
,
Humayun
,
M.
,
Fraser
,
S.
,
Moats
,
R.
, and
Sadhal
,
S. S.
,
2020
, “
Measurement of the Hydraulic Conductivity of the Vitreous Humor
,”
J. Porous Media
,
23
(
2
), pp.
195
206
.10.1615/JPorMedia.2020028229
26.
Scott
,
J. E.
,
1992
, “
The Chemical Morphology of the Vitreous
,”
Eye
,
6
(
6
), pp.
553
555
.10.1038/eye.1992.120
27.
Ai
,
L.
, and
Vafai
,
K.
,
2006
, “
A Coupling Model for Macromolecule Transport in a Stenosed Arterial Wall
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1568
1591
.10.1016/j.ijheatmasstransfer.2005.10.041
28.
Khanafer
,
K.
, and
Vafai
,
K.
,
2006
, “
The Role of Porous Media in Biomedical Engineering as Related to Magnetic Resonance Imaging and Drug Delivery
,”
Heat Mass Transfer
,
42
(
10
), pp.
939
953
.10.1007/s00231-006-0142-6
29.
Vafai
,
K.
,
2011
,
The Role of Porous Media in Biomedical Engineering as Related to Magnetic Resonance Imaging and Drug Delivery
,
CRC Press
, Boca Raton, FL.
30.
Vafai
,
K.
,
1984
, “
Convective Flow and Heat Transfer in Variable-Porosity Media
,”
J. Fluid Mech.
,
147
(
1
), pp.
233
259
.10.1017/S002211208400207X
31.
Pang
,
I.
, and
Clark
,
A. F.
,
2008
, “
Chapter 3: IOP as a Target—Inflow and Outflow Pathways
,”
Ocular Therapeutics
,
T.
Yorio
,
A. F.
Clark
, and
M. B.
Wax
, eds.,
Academic Press
,
London
, pp.
45
67
.
32.
Montero
,
I. P.
,
2014
, “
Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems
,” Bachelor's thesis,
Polytechnic University of Catalonia
, Barcelona, Catalonia, Spain.
33.
Penkova
,
A.
,
Rattanakijsuntorn
,
K.
,
Sadhal
,
S.
,
Tang
,
Y.
,
Moats
,
R.
,
Hughes
,
P. M.
,
Robinson
,
M. R.
, and
Lee
,
S. S.
,
2014
, “
A Technique for Drug Surrogate Diffusion Coefficient Measurement by Intravitreal Injection
,”
Int. J. Heat Mass Transfer
,
70
, pp.
504
514
.10.1016/j.ijheatmasstransfer.2013.11.002
34.
Rattanakijsuntorn
,
K.
,
Penkova
,
A.
, and
Sadha
,
S. S.
,
2018
, “
Mass Diffusion Coefficient Measurement for Vitreous Humor Using FEM and MRI
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
297
, p.
012024
.10.1088/1757-899X/297/1/012024
35.
Zhang
,
S.
,
Penkova
,
A.
,
Humayun
,
M. S.
,
Martinez-Camarillo
,
J. C.
,
Tadle
,
A. C.
,
Galesic
,
A.
,
Thompson
,
M. E.
,
Pratt
,
M.
,
Gonzales-Calle
,
A.
, and
Sadhal
,
S. S.
,
2021
, “
In Vivo Experimental and Analytical Studies for Bevacizumab Diffusion Coefficient Measurement in the Rabbit Vitreous Humor
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
032101
.10.1115/1.4049033
36.
Penkova
,
A.
,
Moats
,
R.
,
Humayun
,
M.
,
Fraser
,
S.
, and
Sadhal
,
S. S.
,
2019
, “
Diffusive Transport in the Vitreous Humor: Experimental and Analytical Studies
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p.
050801
.10.1115/1.4042297
You do not currently have access to this content.