Abstract

Boiling heat transfer suffers deteriorations under subatmospheric conditions, which can be attributed to a shortage of viable nucleation sites at declining pressures. In this work, the possibility of enhancing low-pressure saturated boiling of water using a combination of wettability patterning and structural modifications was experimentally explored. The copper test surface, comprised of an array of circular “dimples” (0.3 mm in depth, 0.5 mm in diameter, and 3.0 mm in pitch), was spray-coated by polytetrafluoroethylene (PTFE) coatings so as to form a matching biphilic pattern with the surface cavities. The resulting dimpled biphilic surface showed appreciable heat transfer enhancement—with a maximum 60% increase of the average heat transfer coefficient of nucleate boiling compared with a flat biphilic surface—down to about 9.5 kPa. Further lowering the pressure to 7.8 kPa, however, was found to lead to diminished performance gains. The visualization study of the bubble departure dynamics revealed signs of additional vapor trapping of the hydrophobic-coated cavities, which can induce uninterrupted bubble regeneration with zero waiting time and explain the qualified enhancement of subatmospheric boiling. Thanks to a potential secondary pinning of contact line inside the hydrophobic cavities, incomplete bubble detachment could prevail at somewhat lower pressures than was otherwise possible without the dimple structure, leaving behind significantly more vapor residues. However, the vapor-trapping capacity was found to decrease with pressure, which provided clues with regard to the reduced efficacy of the surface at even lower pressures.

References

1.
Mudawar
,
I.
,
2013
, “
Recent Advances in High-Flux, Two-Phase Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021012
.10.1115/1.4023599
2.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111002
.10.1115/1.4024595
3.
Dhir
,
V. K.
,
2019
, “
Advances in Understanding of Pool Boiling Heat Transfer—From Earth on to Deep Space
,”
ASME J. Heat Transfer
,
141
(
5
), p.
050802
.10.1115/1.4043282
4.
Kandlikar
,
S. G.
,
2019
, “
A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling
,”
ASME J. Heat Transfer
,
141
(
5
), p.
051501
.10.1115/1.4042702
5.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
6.
Dhir
,
V. K.
,
2006
, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer—Achievable or a Hopeless Task?
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
1
12
.10.1115/1.2136366
7.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2005
, “
Heterogeneous Nucleation With Artificial Cavities
,”
ASME J. Heat Transfer
,
127
(
11
), pp.
1189
1196
.10.1115/1.2039111
8.
Bankoff
,
S. G.
,
1958
, “
Entrapment of Gas in the Spreading of a Liquid Over a Rough Surface
,”
AIChE J.
,
4
(
1
), pp.
24
26
.10.1002/aic.690040105
9.
Jo
,
H.
,
Kaviany
,
M.
,
Kim
,
S. H.
, and
Kim
,
M. H.
,
2014
, “
Heterogeneous Bubble Nucleation on Ideally-Smooth Horizontal Heated Surface
,”
Int. J. Heat Mass Transfer
,
71
, pp.
149
157
.10.1016/j.ijheatmasstransfer.2013.12.040
10.
Webb
,
R. L.
,
2004
, “
Donald Q. Kern Lecture Award Paper: Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1051
1059
.10.1115/1.1834615
11.
Nam
,
Y.
,
Wu
,
J.
,
Warrier
,
G.
, and
Ju
,
Y. S.
,
2009
, “
Experimental and Numerical Study of Single Bubble Dynamics on a Hydrophobic Surface
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121004
.10.1115/1.3216038
12.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2006
, “
Comparison of Nucleation Site Density for Pool Boiling and Gas Nucleation
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
13
20
.10.1115/1.2130399
13.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
91
(
2
), pp.
245
250
.10.1115/1.3580136
14.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061502
.10.1115/1.4023576
15.
Koffman
,
L. D.
, and
Plesset
,
M. S.
,
1983
, “
Experimental Observations of the Microlayer in Vapor Bubble Growth on a Heated Solid
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
625
632
.10.1115/1.3245631
16.
Li
,
D.
, and
Dhir
,
V. K.
,
2007
, “
Numerical Study of Single Bubble Dynamics During Flow Boiling
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
864
876
.10.1115/1.2717942
17.
Wu
,
J.
, and
Dhir
,
V. K.
,
2010
, “
Numerical Simulations of the Dynamics and Heat Transfer Associated With a Single Bubble in Subcooled Pool Boiling
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111501
.10.1115/1.4002093
18.
Wu
,
J.
, and
Dhir
,
V. K.
,
2011
, “
Numerical Simulation of Dynamics and Heat Transfer Associated With a Single Bubble in Subcooled Boiling and in the Presence of Noncondensables
,”
ASME J. Heat Transfer
,
133
(
4
), p.
041502
.10.1115/1.4000979
19.
Kern
,
J.
, and
Stephan
,
P.
,
2003
, “
Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1106
1115
.10.1115/1.1622717
20.
Fuchs
,
T.
,
Kern
,
J.
, and
Stephan
,
P.
,
2006
, “
A Transient Nucleate Boiling Model Including Microscale Effects and Wall Heat Transfer
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1257
1265
.10.1115/1.2349502
21.
Utaka
,
Y.
,
Hu
,
K.
,
Chen
,
Z.
, and
Morokuma
,
T.
,
2018
, “
Measurement of Contribution of Microlayer Evaporation Applying the Microlayer Volume Change During Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
125
, pp.
243
247
.10.1016/j.ijheatmasstransfer.2018.04.044
22.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
ASME J. Heat Transfer
,
74
, pp.
969
976
.
23.
Pioro
,
I. L.
,
1999
, “
Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2003
2013
.10.1016/S0017-9310(98)00294-4
24.
Levy
,
S.
,
1959
, “
Generalized Correlation of Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
81
(
1
), pp.
37
42
.10.1115/1.4008126
25.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
26.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
87
(
1
), pp.
17
27
.10.1115/1.3689038
27.
Son
,
G.
,
Ramanujapu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
51
62
.10.1115/1.1420713
28.
Mukherjee
,
A.
, and
Dhir
,
V. K.
,
2004
, “
Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1023
1039
.10.1115/1.1834614
29.
Banerjee
,
D.
, and
Dhir
,
V. K.
,
2001
, “
Study of Subcooled Film Boiling on a Horizontal Disc: Part 2—Experiments
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
285
293
.10.1115/1.1345890
30.
Hesse
,
G.
,
Sparrow
,
E. M.
, and
Goldstein
,
R. J.
,
1976
, “
Influence of Pressure on Film Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
166
172
.10.1115/1.3450513
31.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.10.1115/1.3450013
32.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
33.
Kandlikar
,
S. G.
,
2020
, “
Evaporation Momentum Force and Its Relevance to Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
142
(
10
), p.
100801
.10.1115/1.4047268
34.
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2006
, “
Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1243
1256
.10.1115/1.2349510
35.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121009
.10.1115/1.3220144
36.
Kim
,
J.
,
Jun
,
S.
,
Lee
,
J.
,
Godinez
,
J.
, and
You
,
S. M.
,
2017
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface
,”
ASME J. Heat Transfer
,
139
(
10
), p.
101501
.10.1115/1.4036599
37.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces—Part I: Experimental Investigation
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
445
450
.10.1115/1.3244320
38.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
39.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.10.1115/1.4003046
40.
Rahman
,
M. M.
,
Pollack
,
J.
, and
McCarthy
,
M.
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
,
5
(
1
), p.
13145
.10.1038/srep13145
41.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
42.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.10.1063/1.3485057
43.
Frankiewicz
,
C.
, and
Attinger
,
D.
,
2017
, “
On Temporal Biphilicity: Definition, Relevance, and Technical Implementation in Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
139
(
11
), p.
111511
.10.1115/1.4037162
44.
Shen
,
B.
,
Yamada
,
M.
,
Hidaka
,
S.
,
Liu
,
J.
,
Shiomi
,
J.
,
Amberg
,
G.
,
Do-Quang
,
M.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2017
, “
Early Onset of Nucleate Boiling on Gas-Covered Biphilic Surfaces
,”
Sci. Rep.
,
7
(
1
), p.
2036
.10.1038/s41598-017-02163-8
45.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.10.1115/1.2910737
46.
Yamada
,
M.
,
Shen
,
B.
,
Imamura
,
T.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2017
, “
Enhancement of Boiling Heat Transfer Under Sub-Atmospheric Pressures Using Biphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
115
, pp.
753
762
.10.1016/j.ijheatmasstransfer.2017.08.078
47.
Shen
,
B.
,
Yamada
,
M.
,
Mine
,
T.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2018
, “
Depinning of Bubble Contact Line on a Biphilic Surface in Subatmospheric Boiling: Revisiting the Theories of Bubble Departure
,”
Int. J. Heat Mass Transfer
,
126
, pp.
715
720
.10.1016/j.ijheatmasstransfer.2018.06.030
48.
Lemmon
,
E. W.
,
Ian
,
H. B.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
49.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.10.1080/01457630600793962
50.
Shen
,
B.
,
Liu
,
J.
,
Amberg
,
G.
,
Do-Quang
,
M.
,
Shiomi
,
J.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2020
, “
Contact-Line Behavior in Boiling on a Heterogeneous Surface: Physical Insights From Diffuse-Interface Modeling
,”
Phys. Rev. Fluids
,
5
(
3
), p.
033603
.10.1103/PhysRevFluids.5.033603
You do not currently have access to this content.