Abstract

Sustained ocular drug delivery systems are necessary for patients needing regular drug therapy since frequent injection is painful, undesirable, and risky. One type of sustained-release systems includes pellets loaded with the drug, encapsulated in a porous shell that can be injected into the vitreous humor. There the released drug diffuses while the physiological flow of water provides the convective transport. The fluid flow within the vitreous is described by Darcy's equations for the analytical model and Brinkman flow for the computational analysis while the drug transport is given by the classical convection–diffusion equation. Since the timescale for the drug depletion is quite large, for the analytical model, we consider the exterior surrounding the capsule to be quasi-steady and the interior is time dependent. In the vitreous, the fluid-flow process is relatively slow, and meaningful results can be obtained for small Peclet number whereby a perturbation analysis is possible. For an isolated capsule, with approximately uniform flow in the far field around it, the mass-transfer problem requires singular perturbation with inner and outer matching. The computational model, besides accommodating the ocular geometry, allows for a fully time-dependent mass-concentration solution and also admits moderate Peclet numbers. As expected, the release rate diminishes with time as the drug depletion lowers the driving potential. The predictive results are sufficient general for a range of capsule permeability values and are useful for the design of the sustained-release microspheres as to the requisite permeability for specific drugs.

References

1.
Lee
,
S.
, and
Robinson
,
M.
,
2009
, “
Novel Drug Delivery Systems for Retinal Diseases. A Review
,”
Ophthal. Res
,
41
(
3
), pp.
124
135
.10.1159/000209665
2.
Penkova
,
A.
,
Moats
,
R.
,
Humayun
,
M.
,
Fraser
,
S.
, and
Sadhal
,
S.
,
2019
, “
Diffusive Transport in the Vitreous Humor
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p.
050801
.10.1115/1.4042297
3.
Penkova
,
A.
,
Rattanakijsuntorn
,
K.
,
Sadhal
,
S.
,
Tang
,
Y.
,
Moats
,
R.
,
Hughes
,
P. M.
,
Robinson
,
M. R.
, and
Lee
,
S. S.
,
2014
, “
A Technique for Drug Surrogate Diffusion Coefficient Measurement by Intravitreal Injection
,”
Int. J. Heat Mass Transfer
,
70
(
0l
), pp.
504
514
.10.1016/j.ijheatmasstransfer.2013.11.002
4.
Lee
,
S. S.
,
Hughes
,
P.
,
Ross
,
A. D.
, and
Robinson
,
M. R.
,
2010
, “
Biodegradable Implants for Sustained Drug Release in the Eye
,”
Pharm. Res.
,
27
(
10
), pp.
2043
2053
.10.1007/s11095-010-0159-x
5.
Choonara
,
Y. E.
,
Pillay
,
V.
,
Danckwerts
,
M. P.
,
Carmichael
,
T. R.
, and
Du Toit
,
L. C.
,
2010
, “
A Review of Implantable Intravitreal Drug Delivery Technologies for the Treatment of Posterior Segment Eye Diseases
,”
J. Pharm. Sci.
,
99
(
5
), pp.
2219
2239
.10.1002/jps.21987
6.
Herrero-Vanrell
,
R.
, and
Refojo
,
M. F.
,
2001
, “
Biodegradable Microspheres for Vitreoretinal Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
52
(
1
), pp.
5
16
.10.1016/S0169-409X(01)00200-9
7.
Wang
,
J.
,
Jiang
,
A.
,
Joshi
,
M.
, and
Christoforidis
,
J.
,
2013
, “
Drug Delivery Implants in the Treatment of Vitreous Inflammation
,”
Mediators Inflamm.
,
2013
(
01
), pp.
1
8
.10.1155/2013/780634
8.
Yasukawa
,
T.
,
Ogura
,
Y.
,
Kimura
,
H.
,
Sakurai
,
E.
, and
Tabata
,
Y.
,
2006
, “
Drug Delivery From Ocular Implants
,”
Expert Opin. Drug Deliv.
,
3
(
2
), pp.
261
273
.10.1517/17425247.3.2.261
9.
Ferreira
,
J.
,
Gonçalves
,
M.
,
Gudiño
,
E.
,
Maia
,
M.
, and
Oishi
,
C.
,
2020
, “
Mathematical Model for Degradation and Drug Release From an Intravitreal Biodegradable Implant
,”
Comput. Math. Appl.
,
80
(
10
), pp.
2212
2240
.10.1016/j.camwa.2020.09.007
10.
Rodrigues da Silva
,
G.
,
Ligório Fialho
,
S.
,
Camargo Siqueira
,
R.
,
Jorge
,
R.
, and
da Silva Cunha Júnior
,
A.
,
2010
, “
Implants as Drug Delivery Devices for the Treatment of Eye Diseases
,”
Braz. J. Pharm. Sci.
,
46
(
3
), pp.
585
595
.10.1590/S1984-82502010000300024
11.
Bourges
,
J.
,
Bloquel
,
C.
,
Thomas
,
A.
,
Froussart
,
F.
,
Bochot
,
A.
,
Azan
,
F.
,
Gurny
,
R.
,
Benezra
,
D.
, and
Behar-Cohen
,
F.
,
2006
, “
Intra-Ocular Implants for Extended Drug Delivery: Therapeutic Applications
,”
Adv. Drug Deliv. Rev
,
58
(
11
), pp.
1182
1202
.10.1016/j.addr.2006.07.026
12.
Chandra
,
R.
, and
Rustgi
,
R.
,
1998
, “
Biodegradable Polymers
,”
Prog. Polym. Sci
,
23
(
7
), pp.
1273
1235
.10.1016/S0079-6700(97)00039-7
13.
Charles
,
N.
, and
Steiner
,
G.
,
1996
, “
Ganciclovir Intra-Ocular Implant. A Clinicopathologic Study
,”
Ophthalmology
,
103
(
3
), pp.
416
421
.10.1016/S0161-6420(96)30677-5
14.
Fialho
,
S.
,
Behar-Cohen
,
F.
, and
Silva-Cunha
,
A.
,
2008
, “
Dexamethasone-Loaded Poly(e-Caprolactone) Intravitreal Implants: A Pilot Study
,”
Eur. J. Pharm. Biopharm
,
68
(
3
), pp.
637
646
.10.1016/j.ejpb.2007.08.004
15.
Kimura
,
H.
, and
Ogura
,
Y.
,
2001
, “
Biodegradable Polymers for Ocular Drugs Delivery
,”
Ophthalmologica
,
215
(
3
), pp.
143
155
.10.1159/000050849
16.
Kunou
,
N.
,
Ogura
,
Y.
,
Hashizoe
,
M.
,
Honda
,
Y.
,
Hyon
,
S.
, and
Ikada
,
Y.
,
1995
, “
Controlled Intra-Ocular Delivery of Ganciclovir With Use of Biodegradable Scleral Implant in Rabbits
,”
J. Control. Release
,
37
(
1–2
), pp.
143
150
.10.1016/0168-3659(95)00074-I
17.
Smith
,
T.
,
Pearson
,
P.
,
Blandford
,
D.
,
Brown
,
J.
,
Goins
,
K.
,
Hollins
,
E.
,
Schmeisser
,
E.
,
Glavinos
,
P.
,
Baldwin
,
L.
, and
Ashton
,
P.
,
1992
, “
Intravitreal Sustained-Release Ganciclovir
,”
Arch. Ophthalmol
,
110
(
2
), pp.
255
258
.10.1001/archopht.1992.01080140111037
18.
Yasukawa
,
T.
,
Ogura
,
Y.
,
Sakurai
,
E.
,
Tabata
,
Y.
, and
Kimura
,
H.
,
2005
, “
Intraocular Sustained Drug Delivery Using Implantable Polymeric Devices
,”
Adv. Drug Deliv. Rev
,
57
(
14
), pp.
2033
2046
.10.1016/j.addr.2005.09.005
19.
Kim
,
H.
,
Lizak
,
M. J.
,
Tansey
,
G.
,
Csaky
,
K. G.
,
Robinson
,
M. R.
,
Yuan
,
P.
,
Wang
,
N. S.
, and
Lutz
,
R. J.
,
2005
, “
Study of Ocular Transport of Drugs Released From an Intravitreal Implant Using Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
150
164
.10.1007/s10439-005-8974-7
20.
Penkova
,
A. N.
,
Zhang
,
S.
,
Humayun
,
M. S.
,
Fraser
,
S.
,
Moats
,
R.
, and
Sadhal
,
S. S.
,
2020
, “
Measurement of the Hydraulic Conductivity of the Vitreous Humor
,”
J. Porous Media
,
23
(
2
), pp.
195
206
.10.1615/JPorMedia.2020028229
21.
Sebag
,
J.
,
1992
, “
The Vitreous
,”
Adler's Physiology of the Eye
,
W. M.
Hart
, ed., 9th ed.,
Mossby, Inc
,
St Louis, MO
, pp.
268
347
.
22.
Dehdashti
,
E.
, and
Masoud
,
H.
,
2020
, “
Forced Convection Heat Transfer From a Particle at Small and Large Peclet Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
6
), p.
061803
.10.1115/1.4046590
23.
Feng
,
Z.-G.
,
2013
, “
Forced Heat and Mass Transfer From a Slightly Deformed Sphere at Small but Finite Peclet Numbers in Stokes Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
8
), p.
081702
.10.1115/1.4023937
24.
Goddard
,
J.
, and
Acrivos
,
A.
,
1967
, “
An Analysis of Laminar Forced-Convection Mass Transfer With Homogeneous Chemical Reaction
,”
Q. J. Mech. Appl. Math.
,
20
(
4
), pp.
471
497
.10.1093/qjmam/20.4.471
25.
Acrivos
,
A.
, and
Goddard
,
J.
,
1965
, “
Asymptotic Expansions for Laminar Forced-Convection Heat and Mass Transfer
,”
J. Fluid Mech.
,
23
(
02
), pp.
273
291
.10.1017/S0022112065001350
26.
Acrivos
,
A.
, and
Taylor
,
T. D.
,
1962
, “
Heat and Mass Transfer From Single Spheres in Stokes Flow
,”
Phys. Fluids
,
5
(
4
), pp.
387
393
.10.1063/1.1706630
27.
Gupalo
,
Y. P.
, and
Ryazantsev
,
Y. S.
,
1972
, “
Mass and Heat Transfer From a Sphere in a Laminar Flow
,”
Chem. Eng. Sci.
,
27
(
1
), pp.
61
68
.10.1016/0009-2509(72)80141-6
28.
Bell
,
C. G.
,
Byrne
,
H. M.
,
Whiteley
,
J. P.
, and
Waters
,
S. L.
,
2013
, “
Heat or Mass Transfer From a Sphere in Stokes Flow at Low Péclet Number
,”
Appl. Math. Lett.
,
26
(
4
), pp.
392
396
.10.1016/j.aml.2012.10.010
29.
Sadhal
,
S. S.
,
1993
, “
Transient Heat Transfer From a Solid Sphere Translating at Low Reynolds Number: A Perturbation Solution at Low Peclet Number
,”
Heat Mass Transfer
,
28
(
6
), pp.
365
370
.10.1007/BF01539535
30.
Liu
,
S.
, and
Masliyah
,
J. H.
,
2005
, “
Dispersion in Porous Media
,”
Handbook of Porous Media
,
K.
Vafai
, ed., 2nd ed.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
81
140
.
You do not currently have access to this content.