Abstract

Boiling heat transfer is one of the most effective methods to meet the challenge of heat dissipation of high heat flux devices. A wetting hybrid surface has been shown to have better performance than the hydrophilic or hydrophobic surface. This kind of wetting hybrid modification is always carried out on a plain or flat surface. In this paper, polytetrafluoroethylene (PTFE) powders were coated on a superhydrophilic microcopper dendrite fin surface to build a wetting hybrid surface. The pool-boiling experimental results showed that after applying the coating, the wall superheat dramatically decreased to 8 K, which is 9 K lower than that on the original surface at 250 W·cm−2, and has a better performance than a silicon pin-fin-based wetting hybrid surface.

References

1.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
2.
Prakash
,
C. G. J.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nano Structured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4028
4043
.10.1016/j.rser.2017.10.069
3.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P. I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.10.1002/smll.200700991
4.
Kruse
,
C.
,
Tsubaki
,
A.
,
Zuhlke
,
C.
,
Anderson
,
T.
,
Alexander
,
D.
,
Gogos
,
G.
, and
Ndao
,
S.
,
2016
, “
Secondary Pool Boiling Effects
,”
Appl. Phys. Lett.
,
108
(
5
), p.
051602
.10.1063/1.4941081
5.
Wang
,
Y. Q.
,
Luo
,
J. L.
,
Heng
,
Y.
,
Mo
,
D. C.
, and
Lyu
,
S. S.
,
2018
, “
Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano bi-Porous Copper Surface Structure
,”
Int. J. Heat Mass Transfer
,
119
, pp.
333
342
.10.1016/j.ijheatmasstransfer.2017.11.080
6.
Liaw
,
S. P.
, and
Dhir
,
V. K.
,
1989
, “
Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
731
738
.10.1115/1.3250744
7.
Hsu
,
C.-C.
, and
Chen
,
P.-H.
,
2012
, “
Surface Wettability Effects on Critical Heat Flux of Boiling Heat Transfer Using Nanoparticle Coatings
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3713
3719
.10.1016/j.ijheatmasstransfer.2012.03.003
8.
Zhang
,
B. J.
,
Ganguly
,
R.
,
Kim
,
K. J.
, and
Lee
,
C. Y.
,
2017
, “
Control of Pool Boiling Heat Transfer Through Photo-Induced Wettability Change of Titania Nanotube Arrayed Surface
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
124
130
.10.1016/j.icheatmasstransfer.2016.12.007
9.
Xu
,
P. F.
,
Li
,
Q.
, and
Xuan
,
Y. M.
,
2015
, “
Enhanced Boiling Heat Transfer on Composite Porous Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
107
114
.10.1016/j.ijheatmasstransfer.2014.08.048
10.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.10.1080/01457630600793962
11.
Malavasi
,
I.
,
Bourdon
,
B.
,
Di Marco
,
P.
,
de Coninck
,
J.
, and
Marengo
,
M.
,
2015
, “
Appearance of a Low Superheat “Quasi-Leidenfrost” Regime for Boiling on Superhydrophobic Surfaces
,”
Int. Commun. Heat Mass Transfer
,
63
, pp.
1
7
.10.1016/j.icheatmasstransfer.2015.01.012
12.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H. H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.10.1063/1.3485057
13.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C. J.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.10.1016/j.ijheatmasstransfer.2012.10.080
14.
Kumar
,
S. C. S.
,
Chang
,
Y. W.
, and
Chen
,
P.-H.
,
2017
, “
Effect of Heterogeneous Wettable Structures on Pool Boiling Performance of Cylindrical Copper Surfaces
,”
Appl. Therm. Eng.
,
127
, pp.
1184
1193
.10.1016/j.applthermaleng.2017.08.069
15.
Zupancic
,
M.
,
Steinbucher
,
M.
,
Gregorcic
,
P.
, and
Golobic
,
I.
,
2015
, “
Enhanced Pool-Boiling Heat Transfer on Laser-Made Hydrophobic/Superhydrophilic Polydimethylsiloxane-Silica Patterned Surfaces
,”
Appl. Therm. Eng.
,
91
, pp.
288
297
.10.1016/j.applthermaleng.2015.08.026
16.
Yamada
,
M.
,
Shen
,
B.
,
Imamura
,
T.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2017
, “
Enhancement of Boiling Heat Transfer Under Sub-Atmospheric Pressures Using Biphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
115
, pp.
753
762
.10.1016/j.ijheatmasstransfer.2017.08.078
17.
Motezakker
,
A. R.
,
Sadaghiani
,
A. K.
,
Çelik
,
S.
,
Larsen
,
T.
,
Villanueva
,
L. G.
, and
Koşar
,
A.
,
2019
, “
Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
164
174
.10.1016/j.ijheatmasstransfer.2019.01.139
18.
Shen
,
B.
,
Hamazaki
,
T.
,
Ma
,
W.
,
Iwata
,
N.
,
Hidaka
,
S.
,
Takahara
,
A.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2019
, “
Enhanced Pool Boiling of Ethanol on Wettability-Patterned Surfaces
,”
Appl. Therm. Eng.
,
149
, pp.
325
331
.10.1016/j.applthermaleng.2018.12.049
19.
Jo
,
H.
,
Yu
,
D. I.
,
Noh
,
H.
,
Park
,
H. S.
, and
Kim
,
M. H.
,
2015
, “
Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures
,”
Appl. Phys. Lett.
,
106
(
18
), p.
181602
.10.1063/1.4919916
20.
Shen
,
C.
,
Zhang
,
C.
,
Bao
,
Y.
,
Wang
,
X.
,
Liu
,
Y.
, and
Ren
,
L.
,
2018
, “
Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes
,”
Int. J. Therm. Sci.
,
130
, pp.
47
58
.10.1016/j.ijthermalsci.2018.04.011
21.
Liu
,
Y.
,
Lu
,
M. C.
, and
Xu
,
D. Y.
, “
Role of Easy-to-Activate Nucleation Sites in Pool Boiling
,”
Proceedings of the 16th International Heat Transfer Conference
, Beijing, China, Aug. 8–15, pp.
653
660
.
22.
Liu
,
Y.
,
Tang
,
J.
,
Li
,
L.
,
Shek
,
Y. N.
, and
Xu
,
D.
,
2019
, “Design of Cassie-Wetting Nucleation Sites in Pool Boiling,”
Int. J. Heat Mass Trans.
, 132, pp.
25
33
.10.1016/j.ijheatmasstransfer.2018.11.146
23.
Wang
,
Y. Q.
,
Lyu
,
S. S.
,
Luo
,
J. L.
,
Luo
,
Z. Y.
,
Fu
,
Y. X.
,
Heng
,
Y.
,
Zhang
,
J. H.
, and
Mo
,
D. C.
,
2017
, “
Copper Vertical Micro Dendrite Fin Arrays and Their Superior Boiling Heat Transfer Capability
,”
Appl. Surf. Sci.
,
422
, pp.
388
393
.10.1016/j.apsusc.2017.05.251
24.
Cole
,
R.
,
1974
, “
Boiling Nucleation
,”
Advances in Heat Transfer
,
Academic Press
,
New York
, pp.
85
166
.
You do not currently have access to this content.