Abstract

The heat transfer coefficient of counterinclined film holes fed by different intake structures on the turbine vane leading edge (LE) model is experimentally investigated in this paper. A semicylinder model is adopted to model the vane leading edge, which is arranged with one single row of film holes per side, which are located from the stagnation at a 15-deg angle. The four leading edge models, which are the combinations of the hole-shapes (cylindrical hole and laid-back hole) and intake structures (plenum and impingement), are tested at four blowing ratios M. The contours of the heat transfer coefficient, which are characterized by the Frössling number Fr, since it includes the Reynold number effect, are acquired by the transient measurement technique based on double thermochromic liquid-crystals (LCs). The lateral-averaged Fr of the nonfilm-cooled model is provided by using the same experimental platform with an identical main-flow condition. It is then compared with the published data, which indicates the reliability of the present transient measurement techniques. The results illustrate that a core region with a higher heat transfer appears in the hole-exit downstream, and its distribution is slightly skewed to the inclination direction of the film holes. The shape of the high heat transfer region gradually inclines in the spanwise direction as M increases. The heat transfer in the region where the jet core flows through is relatively low, while the jet edge region is relatively high. The effect of impingement leads to the outflow of each hole becoming increasingly uniform, which can reduce the difference in the heat transfer between the region where the jet core flows through and the jet edge. The heat transfer strength may increase due to the intense turbulence caused by the introduction of the impingement. Compared with the cylindrical hole, the laid-back hole has a spanwise expansion feature, which makes the shape of the high heat transfer region wider in the spanwise direction and increases the heat transfer level. Additionally, the magnitude of the enhancement increases with an increasing M.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor & Francis
,
New York
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Chowdhury
,
N. H. K.
,
Shamsul
,
A. Q.
,
Zhang
,
M.-J.
, and
Han
,
J.-C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
(
B
), pp.
895
908
.10.1016/j.ijheatmasstransfer.2017.08.020
4.
Ou
,
S.
, and
Rivir
,
R. B.
,
2001
, “
Leading Edge Film Cooling Heat Transfer With High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
614
623
.10.1016/S0142-727X(01)00121-7
5.
Zhang
,
M.-J.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2019
, “
Overall Effectiveness of Film-Cooled Leading Edge Model With Normal and Tangential Impinging Jets
,”
Int. J. Heat Mass Transfer
,
139
, pp.
577
587
.10.1016/j.ijheatmasstransfer.2019.05.037
6.
Liu
,
C.-L.
,
Zhao
,
D.
,
Zhai
,
Y.-N.
,
Zhu
,
H.-R.
,
He
,
Y.-H.
, and
Zhou
,
Z.-X.
,
2018
, “
Investigations on the Film Cooling of Counter-Inclined Film-Hole Row Structures for Turbine Vane Leading Edge
,”
Int. J. Turbo Jet Eng.
,
35
(
3
), pp.
291
303
.10.1515/tjj-2016-0047
7.
Li
,
W.-H.
,
Li
,
X.-Y.
,
Ren
,
J.
, and
Jiang
,
H.-D.
,
2018
, “
Experimental Investigation of Wall Thickness and Hole Shape Variation Effects on Full-Coverage Film Cooling Performance for a Gas Turbine Vane
,”
Appl. Therm. Eng.
,
144
, pp.
349
361
.10.1016/j.applthermaleng.2018.08.068
8.
Fu
,
Z.-Y.
,
Zhu
,
H.-R.
,
Cheng
,
L.-J.
, and
Jiang
,
R.
,
2019
, “
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Adiabatic Film Effectiveness for a Turbine Guide Vane
,”
J. Therm. Sci.
,
28
(
1
), pp.
145
157
.10.1007/s11630-019-1085-9
9.
Li
,
H.-W.
,
Han
,
F.
,
Zhou
,
Z.-Y.
,
Ma
,
Y.-W.
, and
Tao
,
Z.
,
2018
, “
Experimental Investigations of the Effects of the Injection Angle and Blowing Ratio on the Leading-Edge Film Cooling of a Rotating Twisted Turbine Blade
,”
Int. J. Heat Mass Transfer
,
127
(
B
), pp.
856
869
.10.1016/j.ijheatmasstransfer.2018.07.133
10.
Li
,
H.-W.
,
Han
,
F.
,
Wang
,
H.-C.
,
Zhou
,
Z.-Y.
, and
Tao
,
Z.
,
2018
, “
Film Cooling Characteristics on the Leading Edge of a Rotating Turbine Blade With Various Mainstream Reynolds Numbers and Coolant Densities
,”
Int. J. Heat Mass Transfer
,
127
(
B
), pp.
833
846
.10.1016/j.ijheatmasstransfer.2018.07.126
11.
Li
,
H.-W.
,
Han
,
F.
,
Ma
,
Y.-W.
,
Wang
,
H.-C.
,
Zhou
,
Z.-Y.
, and
Tao
,
Z.
,
2019
, “
Experimental Investigation on the Effects of Rotation and the Blowing Ratio on the Leading-Edge Film Cooling of a Twist Turbine Blade
,”
Int. J. Heat Mass Transfer
,
129
, pp.
47
58
.10.1016/j.ijheatmasstransfer.2018.09.005
12.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
13.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.10.1115/1.2841752
14.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
820
827
.10.1115/1.1418367
15.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.10.1115/1.2840937
16.
Reiss
,
H.
, and
BöLcs
,
A.
,
2000
, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
161
169
.10.1115/1.555420
17.
Gao
,
Z.-H.
, and
Han
,
J.-C.
,
2009
, “
Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061701
.10.1115/1.3082413
18.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Ablert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Vane Leading Edge
,”
ASME
Paper No. GT2005-69002.10.1115/GT2005-69002
19.
Li
,
S.-J.
,
Yang
,
S.-F.
, and
Han
,
J.-C.
,
2013
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.10.1115/1.4025225
20.
Liu
,
C.-L.
,
Zhu
,
H.-R.
,
Zhang
,
Z.-W.
, and
Xu
,
D.-C.
,
2012
, “
Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes With Different Hole Pitches
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6832
6845
.10.1016/j.ijheatmasstransfer.2012.06.090
21.
Liu
,
C.-L.
,
Zhu
,
H.-R.
,
Zhang
,
X.
,
Xu
,
D.-C.
, and
Zhang
,
Z.-W.
,
2014
, “
Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes With Different Radial Angles
,”
Int. J. Heat Mass Transfer
,
71
, pp.
615
625
.10.1016/j.ijheatmasstransfer.2013.12.050
22.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.10.1115/1.2927680
23.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.10.1115/1.2927681
24.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
766
773
.10.1115/1.1401035
25.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.10.1115/1.1624848
26.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.10.1115/1.1331537
27.
Liu
,
Z.
,
Ye
,
L.
,
Wang
,
C.
, and
Feng
,
Z.-P.
,
2014
, “
Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1432
1443
.10.1016/j.applthermaleng.2014.05.060
28.
Ravelli
,
S.
,
Dobrowolski
,
L.
, and
Bogard
,
D. G.
,
2010
, “
Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Vane Leading Edge
,”
ASME
Paper No. GT2010-23002.10.1115/GT2010-23002
29.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.-J.
, and
Han
,
J.-C.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Transfer
,
140
(
6
), p.
062201
.10.1115/1.4038691
30.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
31.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
,
1997
, “
Radial Conduction Effects in Transient Heat Transfer Experiments
,”
Aeronaut. J.
,
101
(
1005
), pp.
209
212
.10.1017/S0001924000066380
32.
Wagner
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
Wolfersdorf
,
J. V.
,
2005
, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,”
ASME J. Turbomach.
,
127
(
1
), pp.
175
182
.10.1115/1.1811089
33.
Wagner
,
G.
,
Schneider
,
E.
,
Wolfersdorf
,
J. V.
,
Ott
,
P.
, and
Weigand
,
B.
,
2007
, “
Method for Analysis of Showerhead Film Cooling Experiments on Highly Curved Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
381
389
.10.1016/j.expthermflusci.2006.05.006
34.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,”
Agardograph
,
165
, p.
155
.
35.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
35th ASME National Heat Transfer Conference
, Anaheim, CA, June 10–12, Paper No. NHTC01-1511.
36.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.10.1088/0957-0233/11/7/313
37.
Ye
,
L.
,
Liu
,
C.-L.
,
Zhu
,
H.-R.
, and
Luo
,
J.-X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Adiabatic Film Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4818
.10.2514/1.J057943
38.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
39.
Rutledge
,
J. L.
,
King
,
P. I.
, and
Rivir
,
R. B.
,
2012
, “
Influence of Film Cooling Unsteadiness on Turbine Blade Leading Edge Heat Flux
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071901
.10.1115/1.4005978
40.
Giedt
,
W. H.
,
1949
, “
Investigation of Variation of Point Unit Heat-Transfer Coefficient Around a Cylinder Normal to an Air Stream
,”
Trans. ASME
,
71
, pp.
375
381
.
41.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.10.1115/1.3262169
42.
Kim
,
Y. J.
, and
Kim
,
S. M.
,
2004
, “
Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
245
256
.10.1016/j.ijheatmasstransfer.2003.07.008
You do not currently have access to this content.